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PRECEDING PAGEMBLANK NOT FILME

ANNOTATION

The problems are examined of plotting, mathematically

processing, and determining the accuracy of three-dimensional

geodetic nets compiled from synchronous observations of artificial

earth satellites. The first part (Chapters I - III) gives brief

historical information, and describes the types of geodetic

satellites and equipment used for observations. An examination

is made of the coordinate systems and sequence of coordinate

transformations for reducing all measured values to one system,

the basic moments and the order of preliminary (astrometric)

processing of artificial earth satellite photographs, as well

as laser and doppler measurements.

The second part (Chapters IV - V) describes the principal

methods of space triangulation from photographic, laser, and

doppler measurements, and from different combinations. This

section is primarily devoted to problems of adjusting space

triangulation. The adjusting methods are divided into two

groups: the first group includes those in which coordinates

of points on the earth and on the satellites are determined

concurrently, and the other - only the coordinates of points

on the Earth. Since many elements of space triangulation are

functions of the measurement results, the generalized principle

of least squares is used for their adjustment.

A comparative summary of different methods of adjusting

space triangulation is given in conclusion.

The third part (Chapters VI - VII) examines the problems of

an apriori determination of the accuracy of elementary figures,

iii



series, and continuous nets of space triangulation. The optimal

figure forms are studied, and some considerations on plotting

space triangulation are presented.

The majority of the classifications in the second and third

parts have been developed by the authors, and are first presented

in systematic form.

The book is designed for scientists and engineers studying

space geodesy, and also students in advanced courses and candi-

dates for degrees in geodesy.

There are 6 tables, 80 figures, and 75 references.
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PLOTTING, ADJUSTMENT AND ESTIMATION OF THE ACCURACY

OF SPACE GEODETIC NETWORKS

Ye. G. Boyko, B. M. Klenitskiy,
I. M. Landis and G. A. Ustinov

Introduction /3*

The main problems of modern geodesy are determination of the

position of points of the Earth's surface in a single coordinate

system and the characteristics of the Earth's gravitational field.

Solution of these problems within the framework of classical

geodesy is characterized by the use of two three-dimensional

coordinate systems to determine the position of the same point.

The position of a point is calculated on an ellipsoid, and

the height of this same point - with respect to a quasi-geoid.

This duality is aggravated even more by the fact that every

country (or group of countries) has its own reference ellipsoid,

i.e., it establishes a special coordinate system even to calcu-

late a systematic system of points. This is how the large number

of national coordinate systems developed and, as a result, the

problem of establishing relationships between them.

Up to the second half of the 1950's, the main source of

information to solve geodetic problems was the results of obser-

vations carried out on the Earth's surface, and of the sighting

targets located on it. This naturally limited the possibilities

of studying the Earth's shape by geometric methods primarily due

*Numbers in the margin indicate pagination in the
original foreign text.
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to the relatively small lengths of the sides, providing visibility

of the sighting target. Because of this, it was impossible to

relate the continuous triangulation net of a territory, divided by

large water expanses, to obtain sufficiently large arcs of degree

measurements and to create a single coordinate system for the

entire Earth.

Solution of this problem is possible in principle on the

basis of using gravimetric data. As a result, local systems will

be reduced to a single system with the origin at the center of

the Earth's mass. However, a detailed study of the Earth's

gravitational field entails a number of difficulties and, pri-

marily, the necessity of measuring gravity at sea. In connection

with this, the problem obtains only an approximate solution.

A complex solution of basic geodetic problems would be possible

by observations of space objects, moving in the Earth's gravita-

tional field. Such objects, being high-altitude sighting targets,

would expand the possibilities of the geometric method considerably.

Study of the motion of these objects in the Earth's gravitational

field would lead to a determination of its characteristics.

Attempts to use the natural satellite of the Earth - the /4

Moon - as such an object led to the development of a new branch

of science - space (satellite) geodesy. However, observations

of the Moon as an object for space geodesy had no important

practical significance.

The appearance of artificial Earth satellites (AES) contri-

buted to the development of space geodesy and led to important

results within short periods both in determination of the loca-

tion of points in a unified global system and in a study of the

Earth's gravitational field.
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Two main trends of space geodesy have now quite clearly

formed. The first trend includes a group of methods for the

joint determination of the Earth's geophysical parameters and

the coordinates of points. This section is often called the

dynamic method. A vast literature is devoted to a description

of this method. It is more completely and thoroughly outlined

in the investigation of W. Kaula "Satellite Geodesy," written

in 1966 and published in 1970 in the Russian language by the

"Mir" Publishing House.

Construction of three-dimensional geodetic nets with the

aid of synchronous observations of AES comprises the second

trend, which has been called the geometric method, or space

triangulation. This method cannot be considered as a simple

improvement of known methods of classical geodesy, leading only

to an increase in the length of the sides of geodetic nets.

A number of characteristics of. measuring information and its

mathematical treatment generated a large number of new problems,

not characteristic of the methods of ordinary geodesy.

In connection with this, numerous investigations have

appeared both in domestic and in the foreign literature, devoted

to problems of applying different systems of coordinates, to a

consideration of optimum plotting of space triangulation and

its preliminary processing and adjustment.

An attempt has been made in the present investigation to

systematically outline the problems of a priori evaluation of

the accuracy, projection and mathematical treatment of measure-

ments in space geodetic nets, created by synchronous observations

of AES. Taking into account the great importance of these prob-

lems for solution of scientific and technical problems, the

authors attempted, along with the necessary theoretical justi-

fication, to reduce the final results to a form convenient for

practical use. 3



In conclusion, we note that space geodesy, like any new

branch of science, is developing very rapidly, and its individual

disciplines and the relationships between them have not yet been

settled and have not yet passed the necessary test of time. The

authors well understand that there are many sections and problems

in the book, exposition of which could be improved; therefore,

they will gratefully accept all critical comments of readers.



CHAPTER 1

DEVELOPMENT OF METHODS OF GEODETIC UTILIZATION

OF ARTIFICIAL EARTH SATELLITES

1. Historical Statement /

Use of the Moon

Long before the appearance of artificial Earth satellites

(AES), the possibilities of geodetic utilization of the obser-

vations of space objects, having a discernible diurnal parallax,

were evaluated for their merit. Prior to the launch of the

first AES, the only such method was the Earth's natural satellite

- the Moon. Scientists attempted to use observations of it for

geodetic purposes for about 200 years.

The diurnal parallax of the Moon does not exceed 61'32".

Consequently, the maximum parallactic shift of the Moon with

respect to the stars, even when it is observed on the horizon

at points opposite the Earth's surface, will comprise a little

more than 2°. As a result, when purely geometric methods of

transmission of coordinates between points of the Earth's surface

using observations of the Moon are utilized, satisfactory geo-

metric plots cannot be obtained.

It is easy to calculate that, even if the geocentric motion

of the Moon is known with high accuracy, and the bearings toward

the center of the Moon are measured with an error of 0.02",

the position of a point on the Earth cannot be calculated more

precisely than 100 m.
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Therefore, it is quite natural that, in turning to the

problem of geodetic utilization of the Moon, scientists were

faced primarily with the problem of developing those methods and

equipment for observation which would provide the highest accuracy.

The problem of geodetic treatment of observations has moved aside

to a secondary position.

Phenomena of solar eclipses and osculations of stars by the

Moon are employed in visual observations of the Moon. The essence

of observations in this case reduced to fixation of the moments

of contact of the edges of the visible disks of the Moon and Sun

or moments of osculation of the stars by the Moon. The measure-

ment accuracy is affected by a large number of factors, primarily

by the unevenness of the visible edge of the Moon.

Special maps of lunar profiles have been created to take

into account corrections for "lunar topography." Such maps,

for example, were created by Hain in 1914 and by the Tartu /6

Observatory in 1952. The accuracy with which the position of

an individual point of the lunar limit is calculated by these

maps is apparently no greater than ±0.1" [5], which naturally

does not satisfy the requirements of geodetic measurement. Lunar

profile maps, created at the Observatory imeni Engel'gardt in

Kazan' in 1958 [39] and at the Naval Observatory in Washington

in 1963, are possibly somewhat more accurate. However, a con-

siderable increase in accuracy may be expected only from a

direct study of the Moon by photography of its surface from an

artificial lunar satellite and by making direct geodetic measure-

ments both between points of the Earth, Moon and spacecraft, and

on the lunar surface.
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Besides the creation of lunar profile maps, special methods

and equipment for recording the moments of observation have been

proposed which raise the accuracy of results. These are, for

example, the method of observation at equal position angles [63]

and photoelectric recording of osculations [75].

Methods of obtaining topocentric directions toward the Moon

by direct photography of it on a background of the stellar sky

are well known. Attempts to obtain photographic images of celes-

tial objects were undertaken soon after discovery of the photo-

graphic process.

It is interesting to note that the first celestial object

recorded on photographs was the Moon [6]. The first good photo-

graph of the Moon was obtained by Draper in 1840. During the

period 1911 - 1917, King obtained a bearing toward the Moon with

an error of ma = ±l". During the period 1920 - 1928, Boehm,

using Hain's photographs, raised the accuracy of determining the

bearing toward the Moon to ±0.5 - 0.7". The main difficulty in

obtaining good images of the stars and Moon on a single negative

occurred due to the comparatively high speed of motion of the

Moon with respect to the stars and its great brightness. These

difficulties were overcome as a result of creating special lunar

cameras [5, 38], in which the motion of the Moon and attenuation

of its brightness (a dark plane-parallel Markowitz plate) were

compensated for, and exposures of different length (Mikhaylov's

"shutter") were made for the Moon and stars. Observations made

by Markowitz during the International Geophysical Year (IGY)

determined the central position of the visible disk of the Moon

with respect to reference stars on a photographic plate with an

accuracy of ±0.15". Markowitz concludes from this that multiple

photographic observations of the Moon determine the geocentric
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position of the observation point with an accuracy of ±30 - 40 m

[61]. Apparently, this is the limit of accuracy, the approxima-

tion of which is theoretically possible by photographic observa-

tions of the Moon.

Despite the great success in improving methods of geodetic

use of the Moon, creation of special equipment and methods of

observation, these investigations did not go beyond the limits

of individual experiments. A good illustration of this is two

predictions. The first was made in 1768 by Johann Albert Euler,

the son of the famous Leonard Euler. Considering the possibility /7

of deriving a meridian ellipse from observations of the Moon from

a number of points located on a single meridian, he wrote:

". . . If the Moon were closer to the Earth or there were other

bodies close to the Earth which could be observed from different

points of a single meridian, this method of determining the shape

of the Earth would be simpler and more convenient than a method

based on degree measurements in triangles" (Snellius's triangu-

lation method). The second proposition belongs to the renowned

Soviet scientist, academician A. A. Mikhaylov, and was made in

1957 literally on the eve of the launch of the first artificial

satellite in the USSR: "The distance of the Moon from the Earth

and the smallness of the lunar parallax caused by this, make

geodetic use of the Moon a difficult if not a thankless task." And

further: "Perhaps, in the future the Moon will be replaced by

an artificial satellite, moving near the Earth, the observation

of which will solve geodetic problems more accurately" [38].

Vgisala's Method

In 1945, the Finnish scientist Vaisala [70] proposed calcu-

lating the direction of a chord, connecting two ground points,

by simultaneous observation of flares fired from aircraft or

balloons. In this case, unlike the previous triangulation with
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high-altitude moving sighting targets, it was proposed to

photograph the flare on the background of the stellar sky rather

than to use goniometric instruments to measure the bearings

toward the flare. Then the direction toward the flare could be

calculated by the camera method after photographic measurement

of the position of the flare with respect to stars with known

coordinates.

Experimental calculations of the direction of the chord

between two points (at Helsinki and near Turku) were carried out

in 1946. Magnesium flares fired from a balloon were photographed.

This first experiment may be considered the beginning of three-

dimensional astral triangulation, but this method has not found

extensive use, because the altitudes to which the sighting tar-

gets were raised were not adequate for increasing the length of

the triangulation sides.

Space Geodesy

Only after the launch of the first artificial Earth satellite

in the USSR on 4 October 1957 did the real possibility of con-

structing three-dimensional triangulation with large sides appear.

The first practical experiments carried out both in the USSR and

abroad [53, 72] indicated the great promise and possibility of

high accuracy of the new method.

Construction of the first experimental network of AES

observation points for geodetic purposes was begun by the

Smithsonian Astrophysical Observatory (United States) in 1959.

It included 12 points equipped with equipment to photograph AES

on the background of the stellar sky. Investigations on the

observation of AES for geodetic purposes have been conducted in

the USSR and the socialist countries since 1961 upon the
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initiative of scientists of Pulkova Observatory and of the /8

Astronomical Council of the Academy of Sciences of the USSR.

Photographic observations of different AES have already yielded

extensive material which leads to the construction of a geodetic

net, encompassing a considerable area [53]. These investigations

are being continued successfully even now in a program of inter-

national cooperation.

With the development of space geodetic nets, photographic

observations have begun to be supplemented by laser and radio-

technical measurements, independentlyofweather conditions, which

yield the distances, radial components of AES speed and differ-

ences of the distances from the observation point to the AES

positions with high accuracy.

2. Principal Fundamentals of Methods of Using AES

Observations for Geodetic Purposes

Three vectors (Figure 1) are connected by the relation

rK= rC ±PCKp (2.1)

Essentially, Equation (2.1) is the basic equation of space

geodesy [15].

If point C corresponds to the AES observation point and

point K corresponds to the position of the satellite, radius

vector rC determines the position of the observation point,

radius vector K determines the position of the satellite, and

radius vector CK determines the position of the satellite with respectand
vector pC determines the position of the satellite with respect

to the observation point (the topocentric position of the

satellite).
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Z As we know, every fixed vector in space is

determined by the point of application, by the

C K direction and by the modulus. Depending on

which, values determining the three vectors of
-~ Y Equation (2.1) are known, the following problems

/ may be distinguished.

Figure 1. 1. The direct problem is calculation of
vector rK, i.e., the position of the satellite

K. In this case, the position of the observation point is assumed

to be known, i.e., vector r has been calculated. Vector PCK must
~C

be measured. It is possible in this case that if all three of its

components have been measured, the problem is solved directly by

a single Equation (2.1). If only the angles characterizing the

direction of vector PCK have been measured, yet another Equation

(2.1), compiled for another observation point, is required for

the solution. If only the distances to the satellite (the modu-

lus of vectors PCK) are measured, it becomes necessary to make

observations from three points to obtain three equations of (2.1).

When measuring the difference of distances according to two posi- /9

tions of the satellite, observation from six points is necessary.

2. The inverse problem is calculation of vector rc, i.e.,

the position of observation point C. We shall assume that vector

rK has been calculated - the position of the satellite is known.

The vector PCK is measured. When all three of its components have

been measured, the problem is solved by a single Equation (2.1).

When measuring only the angles characterizing the direction of

vector PCK' it is necessary to observe two positions of the

satellite to compile two Equations (2.1). When measuring only

11



distances to the satellite, three observations are required to

compile three equations of observation. When calculating the

position of a point by the measured differences of distances,

three pairs of AES positions are required.

In connection with the fact that the direction and value of

vector rK varies in time - the satellite moves - the necessary

element of all constructions is time S. In individual cases,

time may emerge as the measured value, and sometimes it must be

calculated along with other unknowns.

To construct geodetic nets from AES observations, joint

solution of many direct and inverse problems is required.

Essentially, two methods are possible.

1. Combination of the direct and inverse problems by

calculation of the variation of vector rK in time, i.e., the

orbital method. In this case the direct problem is used to cal-

culate the satellite orbits - rK(S), and the inverse problem

- to calculate the position of observation points (although

mathematical treatment of all measurements is carried out jointly).

It is natural that time displacement of observations, made for

solution of direct and inverse problems (Figure 2a) is not required

in this case.

2. Calculation of individual (instantaneous) values of

vector r K' In this case observations should be made simultane-

ously (synchronously) from the calculated and initial points,

i.e., from a point which is taken either as the initial or may

be calculated by other positions of the satellite. Such obser-

vations, in particular, may be photographic, Doppler and laser

(Figure 2b).
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The first method, in

which the intermediate

elements for transmission

of observation point coor-

dinates are the orbital

parameters, are called the

\.\ i. .. 'X,,/ orbital elements. The

second method, based on

synchronous observations,

has been named space

e v Ctriangulation.*

Both methods (the /11

orbital and triangulation)

solve the same problem -

calculation of the point

coordinates. However, the

methods of solution differ

considerably.

In space triangulation

all constructions are

based on geometric functions;

therefore, space triangu-
lation is a purely geometric

method.

Figure 2.

*Sometimes the term "astral triangulation," meaning that the
directions to the AES are calculated with respect to the stars,
or the term "satellite triangulation" are used in the
literature. In our view, these terms are Just as JustTfied (or
unJustified) as the term "space triangulation." Moreover, it
should be noted that the angular values may be measured not only
in a stellar coordinate system, but linear measurements in general
are invariant with respect to coordinate transformations.
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In the orbital method laws of satellite motion are used

which are based on an accurate knowledge of all effective forces.

The dynamic method of processing the results of AES observations

is used to obtain these data. The ultimate purpose of this

method is the problem of calculating the Earth's gravitational

field and shape. The essence of the method is that the precal-

culated motion of the satellite is compared to the observed

motion, and the characteristics of the Earth's gravitational

field and shape are refined with respect to the perturbations.

Circumterrestrial artificial satellites are much more convenient

for these purposes (in any case more convenient than the Moon),

since their motion is almost completely determined by the Earth's

gravity field. In connection with the fact that calculation of

the density of the upper layers of the atmosphere and the effect

of a number of space factors have not yet been adequately studied,

very extensive observational material must be included in the

processing to reduce their effect.

Until adequately extensive, accurate and well distributed

measurements are obtained and carefully processed, the basic

problem of the dynamic method cannot be solved and, consequently,

precise laws of AES motion cannot be obtained.

Therefore, at present the use of theorbital method to

calculate the point coordinates with a high degree of accuracy

is limited. Space triangulation does not depend on the theory of

AES motion and, therefore, its accuracy is determined only by the

merits of geometric construction and by measurement errors. This

also explains the overwhelming use of the space triangulation

method to calculate point coordinates.



It should be noted that there is no absolute boundary between

the methods of processing the results, since, for example, both

the dynamic and orbital methods are connected by a common theory

of satellite motion.

Observation methods may be identified with those of processing

the results, since the results of optical or radiotechnical obser-

vations may be used to solve both dynamic and geometric problems.

In turn, synchronous observations may be used for both orbital

and triangulation methods.

3. Satellites Used for Geodetic Observations

The process of AES observation reduces to fixation of

certain signals coming from it. If on-board devices, emitting

or relaying signals sent from the Earth, are used for geodetic

purposes in observation of AES, such AES are called active. If /12

the satellite is observed only in reflected solar light, it is

called passive.

Usually, passive AES are specially not designated for

geodetic measurements. Therefore, if they are equipped with

on-board equipment, it is not used for geodetic purposes. In

the opposite case, the satellite should be related to active

satellites.

American communication satellites - balloons - should be

primarily included among the satellites of no special geodetic

designation. The first of these, Echo-l, was launched in August

of 1960. It was an inflated sphere, made of a special film,

which was filled after insertion of the satellite into orbit.

A second similar satellite, Echo-2, was launched in January 1964.
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Satellites of the Echo class, having a rather large diameter (up

to 40 m), are easily visible on the background of the stellar sky

and are accessible for observations by simple optical means.

Observations of these satellites laid the basis for-creation

of space triangulation nets. Observations of Echo-l and Echo-2

for geodetic purposes permitted a primary space triangulation net

to be constructed, which encompasses a number of points on the

territory of the USSR and the socialist countries [53]. The

Echo-l and Echo-2 satellites have now ceased to exist. The

successes achieved with geodetic use of these satellites have

led to creation of a special geodetic passive AES - Pageos.

This balloon satellite, launched in June of 1966, has a diameter

of about 30 m, and its outer surface is covered with a thin layer

of aluminum, which ensures a high reflectivity. The orbital

altitude of the Pageos satellite (at the moment of launch -

4600 km above the Earth's surface) permits simultaneous photo-

graphy of it from points located at distances up to 5000 - 6000 km

from each other.

Successful use of passive Echo AES for geodetic purposes

brought to light the problem of creating special active geodetic

satellites, corresponding to the characteristics for solution of

geodetic problems. The requirements for geodetic satellites were

formulated in May of 1964 after the Sixth Session of the Inter-

national Committee on Space Research.~ These requirements reduce

to provision of minimum effects of atmospheric drag. and their

variation, best optical visibility and to selection of optimum

orbital parameters. The general requirements for satellite

orbits, intended to solve geometric problems, are the following:

orbital altitude should be, on the one hand, sufficiently low to

increase the accuracy of calculating point coordinates, and,on
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the other hand, should be sufficiently high to ensure visibility

from points remote from each other. The orbital inclination should

be sufficiently.high that the satellite may be observed at high

latitudes, and eccentricity selected such that the required vari-

ation of altitudes is provided for observation from points /13

located at different distances.

For the successful solution of geodetic problems, it is

desirable to have the following on-board equipment on the

satellite:

- an optical beacon emitting momentary powerful light

flashes.' Generation of light flashes should be accomplished by

a previously designated program, providing the best geometric

construction of the net. The program may be executed by single

commands from Earth or by signals of special on-board devices;

- radio. transmitters of highly stable frequency to produce

Doppler variations, operating in no less than two bands;

- relays for .-radio signals transmitted from Earth for

measurement of distances;

- angle reflectors to make laser measurements;

- highly accurate clocks and data storage to perform

programmed activation of the on-board equipment. Moreover, time

checks may be accomplished by the signals of on-board time trans-

mitted to the observation points;

- a radio altimeter.
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Among the active satellites, the American Geos (Geodetic

Earth Orbiting Satellite) should be noted. The satellites are

equipped with an optical beacon, which emits a series of seven

flashes each with intervals of four seconds between flashes.

Along with the optical beacon, there are Doppler transmitters,

angle laser reflectors and a system for simultaneous determination

of distance and radial velocity on the satellite [62]. Atomic

clocks, which emit signals for measurements at the given pro-

grammed moments with a high degree of accuracy (up to 50

microns/second), are installed on the satellite.

The French geodetic satellites the "Diadem," launched in

February 1967, play an important role in the creation of a

worldwide geodetic net. These are two similar satellites,

equipped with a system of Doppler transmitters and laser

reflectors.

The number of active and passive AES, used for geodetic

purposes, is increasing from year to year. Interesting designs

of special geodetic satellites and systems have been proposed.

One of such design envisions the creation of a satellite whose

motion is not affected by the atmosphere. Elimination of the

effect of the atmosphere opens up extensive possibilities in a

study of the Earth's gravitational field from observations of

low-orbiting AES. This is achieved by inclusion of a heavy

satellite into a lightweight correcting shell.

The design of the Geos-C program, which envisions joint

use of several AES in different Orbits, is of great interest.
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4. Equipment for Observation of AES for Geodetic Purposes

Among the requirements placed on equipment designed for

observation of AES are operativeness, reliability, and accuracy

of measurements. Depending on the problem being solved, one of

these requirements becomes decisive. High accuracy of measure-

ments with comparatively small dimensions and weight of the equip-

ment are primarily required for geodetic purposes. Therefore,

numerous optical (aerological theodolites, phototheodolites, AT,

TZK*, etc.) and radiotechnical goniometric equipment is not used

for geodetic purposes because of its low accuracy (bearings are

measured with an accuracy up to several minutes). Among gonio-

metric equipment, the highest accuracy is provided by photographic

units, which permit a satellite to be photographed against the

background of stars.

Both radiotechnical and laser systems are employed to measure

distances to AES. However, laser systems provide higher accuracy

of measurements. Moreover, Doppler systems, which measure vari-

ation of AES distance at a fixed time interval (or radial velo-

city component), are widely used for observations of AES.

Photographic devices, intended for observations of AES for

geodetic purposes,, despite their variety, may be divided into

three large groups: fixed (azimuthal and ballistic), star

trackers (star and equatorial) and satellite trackers.

The simplest in working principle are photographic devices

of the first group. In these devices the camera is rigidly

secured with respect to the horizontal coordinate system at the

moment of observation. Images of stars and AES are obtained in

*[Translator's Note: Expansion unknown.]
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the form of hatchings and dots on the

- - photographic plate (Figure 3). Only point

/ images of stars and AES are used for astro-

/ -/metric processing. However, due to the

/ / / / different velocity and brightness of stars

/ , / /and AES, it is impossible to receive their

---------------------- - point images simultaneously. The required

Figure 3. length of satellite exposures is from

several hundredths to tenths of a fraction of a second, and that

of star exposures - several seconds. Therefore, a corresponding

number of satellite exposures is made at an interval of 10 - 20s,

and before and after - 2 - 3 star exposures. The moments of

opening and closing of the shutter during each exposure are

recorded to calculate the time of receipt of the point images

of the stars and AES.

The first mass photographic observations of AES for geodetic /15

purposes were carried out with fixed devices. They soon became

extensively used due to the simplicity of design, small size,

and convenience in operation. Usually, the first cameras of this

group were produced on the basis of available aerial photographic

equipment.

The first unit of this group in the Soviet Union was the

UFISZ-25, created in 1959 on the basis of the aerial photography

apparatus the NAFA-25/3S [36]. The focal distance of this camera

is 25 cm, aperture ratio is 1:2.5, the objective is an Uran-9,

the shutter is a louver type and the weight is about 30 kg. The

opening and closing time of the shutter is recorded by a digital

chronograph, operating from a quartz generator. The camera

permits passive satellites with a brighness up to 4m to be photo-

graphed at an angular velocity up to 10/second. The bearing to

the AES is calculated with an error of ±5 - 7".
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The fixed photographic units Wild-WC-4 and the RC-1000 have

been widely used abroad.

The Wild-WC-4 unit has been produced since 1962. It is

designed on the basis of the aerial photography camera RC-5 and

is mounted on a modified support of the Wild-T-4 astronomical

universal theodolite. The focal distance of the camera is 305 mm;

the objective is an "Astrotar" and the aperture ratio is 1:2.6.

The Wild-WC-4 unit permits both active and passive satellites

with a brightness up to 7m to be photographed. The accuracy of

determining direction to the AES is about ±2".

The RC-1000 photographic unit was developed in 1961 with

the main purpose of photographing the flashes of the optical

beacon of an active geodesic AES. The focal distance of the

camera is 1000 mm. The objective is a telescopic "Telephoto"

type, and the aperture ratio is 1:5.0. The camera provides

images of flashes no weaker than 8m . The direction to the AES

is determined with an error of ±1 - 2".

Photography is accomplished in the Wild-WC-4 and RC-1000

units on glass plates, unlike the UFISZ-25 unit, in which film

is used.

The photographic unit of the second group maintains a fixed

bearing of the camera's optical axis in the stellar coordinate

system during observations. Because of this, the star images

on the plate (film) do not shift during photographing and all

stars are received in the form of points. The type of photo-

graph obtained during observation of a passive AES by a star-

tracking camera is shown in Figure 4. The process of photo-

graphing passive AES on these cameras differs from that of

photography by fixed cameras in that it is unnecessary to
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produce special star exposures. The

process of photographing the flashes

of active AES is reduced to opening

. of the shutter until the moment of

. .transmission of the first flash in

the series and closing it after

transmission of the last flash.
Figure 4.

One of the most accurate devices of this group is the FAS-3A,

created in the USSR in 1969 [36]. This unit is similar to the

above RC-1000 in accuracy. The camera of this unit has a mirror- /16

lens objective a focal distance of 480 mm and an aperture ratio

of 1:1.9. Photography is accomplished on glass plates. Unlike

the foreign cameras of this group, tracking of the stellar sky

in the FAS-3A is accomplished during photography with the aid of

an original device, developed by K. Lapushnaya and M. Abele [36]

in 1965 for the AFU-75 unit. This device has been named an

equatorial platform.

Cameras of the third group are more universal and photograph

satellites over a wide range of brightnesses and speeds. The

distinctive feature of these cameras is the possibility of

tracking AES. Tracking is accomplished either by shifting the

plate (film) to compensate for the shift of the AES image or by

the camera tracking the satellite. As a result, the satellite

image is maintained for a long period on one point of the plate

(film), and at the same time an increase in the length of satel-

lite exposure is achieved. The most typical representatives of

this group are the domestic AFU-75 (Figure 5) and the VAU, the

American Baker-Nunn (Figure 6) and the camera built by the Zeiss

Company - the SBG (East Germany).
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Figure 5. Figure 6.

The AFU-75 camera was designed in 1965. This camera has an

equatorial platform for tracking stars. Tracking of AES is

accomplished by shifting a clamped plate with a film in a

cassette. The focal distance of the camera is 735 mm and the

aperture ratio is 1:3.5. The camera permits satellites with a

brightness up to the ninth stellar magnitude to be photographed

in the tracking mode. The accuracy of determining the direction

to the AES is ±2 - 3". The camera weighs about 350 kg.

The VAU camera (Figure 7) began operation at the Zvenigorod

Station of the Astronomical Council of the USSR Academy of

Sciences in 1969. This is a universal camera which permits not

only AES, but distant space objects to be photographed. Opera-

tional control of the camera is automated to the maximum extent.

The camera has a highly accurate timing device. A more detailed

description of this camera is presented in [36].
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Figure 7. Figure 8.

Laser devices measure distances to AES and, moreover, they

may be used to illuminate a satellite when it is being photo-

graphed against a star background. However, in the latter case

a considerable increase of emissivity is required. Therefore,

the laser devices used by the United States (Figure 8), France

and Japan (a total of nine units) up to 1971 for geodesic pur- /17

poses were used mainly for ranging measurements. When designing

laser units, the fact is taken into account that the effective

range of the system is proportional to the fourth power of emitted

energy, inversely proportional to the square root of the beam

width, and directly proportional to the square root of the dia-

meter of the receiver aperture.

The divergence (width) of the laser beam of the transmitter

is established as a function of the accuracy of predicting AES

motion and the accuracy of laser guidance. Laser units now have

a beam divergence from 0.5' to 20'. This angle may be changed

during the operation of some units, for example, on the Japanese
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device. The power of the laser varies from 10 to 50 mW, pulse

length - from 10 to 60 nanoseconds, and pulse energy - from

0.5 to 7.5 J.

A laser unit includes a laser transmitter (ruby lasers with /18

X = 0.694 microns are used), a receiver, a platform and a system

for measuring and recording the results. The measuring process

reduces to determining the time interval of passage of a light

pulse from the device to the AES return. Laser guidance on the

AES may be accomplished visually with the aid of a sighting device

or by a program using previously established ephemerides. At

the moment the laser pulse leaves the transmitter, a frequency

cycle counter of 100 MHz or 1 GHz is triggered. The counter is /19

closed at the moment the reflected pulse enters the receiver.

The time interval T, measured in this manner, makes it possible,
by knowing the speed of light c, to calculate the range

P-2CT.

Range measurement accuracy is mainly determined by three

factors:

- by the steepness of the front and the length of the signal

returned from the AES;

- by the resolving power of the time interval counter;

- by the correct calculation of the variation of the speed

of light in the atmosphere.

Because of the low power of the signal returned from the AES,

only its presence rather than its shape is often established.

Therefore, the pulse length is of great importance to increase

measurement accuracy; the less it is, the less is the error of
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recording the returned pulse. It is assumed that the transmitted

and returned signal, which provides a range measurement with an

accuracy of ±0.6 m [59, 60], may be made to agree by increasing

the power and decreasing the pulse length.

The resolving power of the counter depends on the frequency

of its generator, by which the number of cycles from transmission

to reception of the pulse is calculated. The counters in modern

laser devices operate from generators of 100 MHz or 1 GHz, and

accordingly, their resolving power (scale division) comprises

10 or 1 nanoseconds (1.5 or 0.15 m). It is assumed that the

resolving power of the counters may be increased up to 0.1 nano-

seconds and, consequently, the range measurement error may be

reduced from 0.015 m.

Range measurement accuracy is affected by the atmosphere,

but the effect of this factor may be reduced to 0.15 m at the

moment of observation if adequate consideration is given to

temperature and pressure.

Thus, taking into account the main error sources, we may

assume that an accuracy of measuring distance to AES of ±0.6 -

0.7 m may be achieved. However, laser devices are fixed and,

obviously, unlike photographic cameras, may be used for long

periods at a few space triangulation points for scaling.

The simplest radio engineering apparatus for observation of

AES are Doppler devices. They measure the Doppler frequency

shift, caused by motion of the AES with respect to the observa-

tion point. The devices consist of a receiver for the frequency

emitted by the satellite, a highly stable ground-based generator

and recording devices. The principle of operation of the devices

is based on comparing the frequency received from the AES with
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that of the ground-based generator and in deriving the Doppler

shift from their difference in the form of numerical character-

istics (n) at small time intervals (T). These characteristics /20

are proportional to the variation of distance (Ap) to the AES

during time T
¢

Ap=-,

where c is the propagation velocity of radio waves; and f is the

frequency with respect to which the numerical characteristic is

measured.

If the measurement of the characteristic is related to the

average moment, we may obtain the value of the radial component

of the topocentric velocity of the AES (p)

C
p= -n.

Due to the simplicity and small dimensions of the device,

Doppler units of different designs are widely used in observation

of AES for different purposes, including those for solution of

geodesic problems.

As in laser units, measurement accuracy depends primarily

on the correct allowances for radiowave propagation conditions,

the stability of generators being used, and the resolving power

of the counters. At present, an accuracy of receiving p up to

0.02 m/sec has been reached [71].

27



CHAPTER 2

COORDINATE SYSTEMS AND THEIR TRANSFORMATION

Among the many coordinate systems used in space geodesy, we /21

shall consider only those which are required for the following

discussion.

5. Stellar Coordinate Systems

Stellar coordinate systems are spherical. In connection

with the fact that the diurnal parallax of all stars is essen-

tially equal to zero, the origin of these systems may be placed

at any point both inside (including the center of mass) and on

the surface of the Earth, the spherical coordinates which charac-

terize the bearing toward the star being varied negligibly.

The coordinate surfaces of these systems are: a sphere of

unit radius (R = 1); conical surfaces (6 = const) with an apex

at the origin of the coordinates and with an axis parallel to

some position of the Earth's rotational axis; and half-planes

limited by the axis of the conical surfaces.

If the initial half-plane passes through the point of the

vernal equinox, the system does not take part in the diurnal

rotation of the Earth and is fixed in this sense. Such a coor-

dinate system is usually employed in practical astronomy and is

called a secondary equatorial system. The bearings to stars in

this system are given by right ascension a and declination 6

(Figure 9).
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P

Figure 9. Figure 10.

Based on to which position of the equator and which equinox

the coordinate system is related, the following are distinguished:

- the instantaneous system determined by the instantaneous

equator and the true point of the vernal equinox;

- the average system for the epoch T, in which the mean

equator and the point of the vernal equinox to this epoch are

used.

A system for a specific epoch To is fixed by the stellar

coordinates in the catalog. Variation of them in time is caused

only by the natural motions of the stars.

An instantaneous stellar system is not an inertial system.

Because of the fact that it is fixed in space at every moment by

the direction of the Earth's rotational axis, which varies under /22

the effect of precession and nutation, the stellar coordinates

in this system vary continuously (the stars shift their position

by 20" per year).

When considering problems of space triangulation, a stellar

coordinate system must be used which differs from an instantaneous

system in the fact that its initial half-plane does not pass

through the point of the vernal equinox, but is located parallel
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to the instantaneous plane of the Greenwich meridian. This

system participates in the diurnal rotation of the Earth and in

this sense is a rotational system. This system corresponds to

the primary equatorial Greenwich coordinate system used in

astronomy. The bearings toward stars in this coordinate system

are given by the Greenwich horary angle t, or by angle y opposite

in sign to it, and by declination 6 (Figure 10).

Along with equatorial coordinate systems, a coordinate system

is used in which the coordinate planes are the planes of the hori-

zon and the meridian of the point. This coordinate system is

called a horizontal system. Direction in this system is deter-

mined by the zenith angle z and azimuth A.

6. Transformation of Stellar Coordinate Systems

Satellite coordinates are calculated in the stellar system

which includes reference stars from the results of photographic

observations. For geodesic treatment of such measurements, it

is necessary that the mutual position of the coordinate axes

of the stellar and ground coordinate systems be correlated.

The coordinates of reference stars are selected from star

catalogs, compiled in the coordinate system given for a specific

epoch (1900.0 + T c ) - the catalog epoch. Because of the fact

that the Earth's rotational axis does not maintain a constant

direction in space with respect to stars, but varies under the

effect of precession, secular rotation, and nutation - the num-

ber of periodic oscillations - the problem arises of recalcu-

lating (reduction) the stellar coordinates from the catalog

system to an instantaneous system for the observation date

(1900.0 + TH).
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The procedure for such reduction in a matrix notation of /23

formulas more convenient for use by computers, is presented int'ne

article of N. I. Idel'son [23] and in a number of more recent

investigations [11, 46], etc.

Ci)
Let us select from the coordinate catalog any star (a[i),

(i)) Let us correct them for natural motions from the catalog

epoch to the moment of observations, and let us write the direc-

tion cosines of the bearing toward the star

(-) = cos a) Cos );
i(0) -- Sill (5t) COS ~2; ( 6.1)

q? == 6sin V).

The effect of precession leads to a variation of the

direction cosines, which is given by the transformation

' -sin tsinz + -Cost0 sinz-2 - -soszsill 0 I1' l 1
+-- costocoszcos0 -sint 0 coszcoso

mI sinCOSz+ cost ocosz- -sinzsinO-ml. (6.2)
n +cos o Sill z Cos 0 *-sin o sin z cos 0

cos to sin O -sin o sin 0 cos n0 i'

The Eulerian angles in transformation (6.2) are calculated

with an accuracy to small numbers of the third order by the

Newcomb-Andway expressions:*

t= (2304 ,253 +- 1",397TC) + 0 ,302t 2 + 0",018T3;
Z= (2304",253 , 1",397Ti T) t , 1"0950 4 0",018x; (6.3)

r_ ~'(6.3)
0 (2004",685+ 0 ,853X) T- 0 ,427T -- 0 ,042x3,

where T= TH- T TH., T7c] and T are given in tropic centuries,

counting from the epoch of 1900.0.

*These expressions are sometimes transformed by substitution
of the epoch of a specific catalog, for example, 1950.0.
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The effect of nutation must be taken into account to convert

from the mean coordinates with consideration of precession to

true coordinates. With an accuracy up to the square of small

values of 6* and 6e, transformation of the direction cosines for

nutation is calculated by the expression

|| 4 691 S64 Co -s64 sill n VI

ln -cos -·Im (6.4)
n al p Sill --6& 1 ni

The expansions presently used for nutation in terms of

longitude 6d and inclination 6e are presented in Astronomical

Papers,. Vol. 25, p. 1, 1953, have been published since 1960 in

the Astronomical Yearbook of the USSR. If we discard the terms

of a series whose total effect on the accuracy of transformation /24

does not exceed +0.05", the formulas for calculating the nutational

elements assume the form:

- the long-period portion of nutation with respect to

longitude

Aq: c .-. 17",2327 sin - 1i",2729 sinll 2 (- -I-- F -- D) +

l 0,2QOSS sin 2Q +- 0,126I sin 1'- 0,0497 sin (25 q- 1' -4- 2F - 2D) +-

, 0,0214siii(9Q-l'-1-2F-2D)J--0,0124sin(Q .-2F-2D)q- (6.5)
+ 0,0016 sinll 21' - 0,0015 sin 2 (Q + l' I- F-- D) --

- 0,0045 sin (P - 21 + 2F);

- the short-period portion of nutation with respect to

longitude

d , =-0",2037 sin 2 (Q + F) +- 0,0675 sin 1 - 0,0342 sin (Q + 2F) -

-0,0261 sin (2P + l +2F) -0,0149 sin (l -2D); (6.6)
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. - the long-period portion of nutation-with respect to

inclination

A = -9",2100 cos S + 0,5522cos 2 ( + F-D) -0,0904cos 2Q +.

, 0,092Gcos (2P-Il'-2F-- 2D)-0,0093cos(2Q- l'- 2F- 2D)-

-0,0066cos ( + 2F -2D)+0,0007cos 2 (Q --1' +F - D) - ( 6.7 )

- 0,0024 cos (Q - 21-- 2F);

- the short-period portion of nutation with respect to

inclination

de = - 0",0884 cos 2 (Q +F) + 0,0183 cos (Q - 2F) -+
(6.8)

-+ 0,0113 cos (2Q - I + 2F);

61, AV + d- d.9 (6.9)
6be=Ae+de.

The arguments in the expansion of the nutation, which are

fundamental Brown constants, are calculated by the formulas

Q. 259°10'59",79 - 1934°08'31",23T - 7",48T2 -- 0",0080 T3,

I 29G°0G6'16",59 q- 477198 050'56",79 'T -I- 33 ,09 '2 -- 0,05187'3, (6. 10)
+ 0",05(6.10)

1' - 35828' 33" ,00 -- 3599902,59 ,102' -- 0",5/17'2 -0',0 12OiT3,

F 11°15'03",20 + 483202°01 '30",5T -- 1 ,56T 2 0",0017',

D 35054'14:,95 ,-1 4/j52G7 0G'51",lST --5",17T 2 q- 0",00G68T 3.

As a result of the transformations carried out, we calculate /25

the true stellar coordinates ai and 6i

33



Ut =-: ar f (611)'
-arclig -

i.e., the angles characterizing the direction toward the star with

respect to the Earth's; instantaneous rotational axis (angle 6) and

in the plane of the instantaneous equator with respect to the true

point of the vernal equinox (angle a).

Conversion from a secondary equatorial to a horizontal

coordinate system is accomplished by rotation around the Earth's

rotational axis at the angle s, equal to the local sidereal time

of the point, and angle p, equal to the latitude of the point, by

formulas

tg A == A sin <cos 4--cos 6sill cos s,
(6.12)cos Z :Sill (P sill 8 --- Cos (p COS Cos (s.12)

When converting from a primary equatorial system to a hori-

zontal system, rotation by angle s is replaced by rotation by

angle A, equal to the longitude of the point.

7. Geodetic Coordinate Systems

The position of the point in a geodetic coordinate system is

determined by the altitude H above the accepted reference ellip-

soid, latitude B and longitude L. Geodetic latitude is calculated

as the angle formed by the normal to the ellipsoid surface with

the plane of its equator, and geodetic longitude - the dihedral

angle between the planes of the initial meridian and the meridian

of the given point.
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Such an ellipsoidal coordinate system is used in processing

ground geodetic measurements. A system of three-dimensional recti-

linear coordinates X, Y, Z is more convenient in space triangu-

lation, which in its essence is three-dimensional and is not

physically connected to any reference surface. Transformation of

ellipsoidal geodetic coordinates to rectilinear coordinates is

accomplished by the formulas

X = (Nd- II) cos 'B cosL,

Y == (NAr HI) cos ] siln L.,

Z±=( AT-I- I)sin, (7.1)

where

JXQ' cos2 ' -lb ~-i2 Bl

a and b are the semi-major and semi-minor axes of the reference

ellipsoid, respectively.

Conversion from X, Y and Z to B, L and H is inevitably /26

related to iterations when cialculating latitude B and altitude

H. Formulas convenient for calculations on electronic computers

may be derived from (7.1) after raising the first two expressions

to the second power and adding them, and after dividing the third

expression by the result obtained

Y Z /e2 '
t"L' L-=-- ; tgB-- Z+-IT-'-:i- tgB c j-dtg 13. (7.2)X ~ (X2+ y2)'-V

Formula (7.2) permits the cycle of approximations to be

organized. For the first approximation, it is assumed

tan B = c.
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For the second and successive approximation of the value of B,

from the preceding approximation we calculate the values

H.=(X2+ y2)'/isecB-N,

=- a
(O--e2sin2WB)'/

after which the derivations from Formula (7.2) are repeated. The

process of approximations is completed with divergence of AB from

the next two approximations which is less than the given toler-

ance 6Btol. Essentially three approximations are adequate in all

cases to obtain tolerance 6BtoI = 0.03".

Ellipsoidal and triangular systems are different in form,

but both are geodetic by definition.

Different geodetic systems are used in the treatment of
geodetic nets of different continents and even countries. Each

of them has its own point of origin, in which is accomplished the
"external" orientation of "its own" reference ellipsoid. The

vertical line at the point of origin in such an orientation is

correlated with the normal to the reference ellipsoid, and the

plane of the meridian of the point of origin is established

parallel to the Earth's rotational axis in terms of the astro-

nomical azimuth. In this case the vertical line and azimuth

at the point of origin are calculated from astronomical observa-

tions and may be corrected for deflection of the vertical. Thus,

geodetic systems are oriented for a specific epoch in a stellar

coordinate system. Failure to take into account deflection of

the vertical line at the point of origin, as well as to disting-

uish the shape and dimensions of the acc!nted reference ellipsoid

from the general Earth ellipsoid, leads . shift of the origin

of the coordinate system (the center of the reference ellipsoid)

36



with respect to the Earth's center of mass, without violating

the parallelism of the minor axis of the reference ellipsoid with

the Earth's rotational axis [29].

8. A Common Ground Coordinate System

Until recently the problem of establishing a common ground

coordinate system was considered more in theoretical than in

practical formulations. This is explained by the difficulties

of making the necessary sufficiently accurate and extensive

gravimetric and geodetic measurements on the Earth's surface /27

(especially the surface of the ocean). Geodetic use of satellites

(the orbital method) in combination with gravimetric methods now

permits the calculation of a ground coordinate system.

Compared to geodetic systems, a ground coordinate system

includes a reference surface, which may be the surface of an

ellipsoid of rotation with parameters a = 6,378,165 m and a =

1:298.25, recommended by the 13th Assembly of the International

Astronomical Union (1967). The origin of the coordinate system

is located at the Earth's center of mass. The position of the

point defined as the Earth's center of mass is sufficiently

stable. As Professor I. D. Zhongolovich [19] points out, a mass

with an area of 10 x 10 equatorial degrees and altitude of 10 km

on the Earth's surface would have to be shifted by a distance

on the order of 1 km in order to shift it on the Earth by only

1 centimeter.

The minor axis of the common Earth ellipsoid coincides with

the mean rotational axis of the Earth. The three-dimensional

direction of the mean rotational axis of the Earth is fixed with

respect to the stars by the coordinates of the mean pole for the

mean epoch of 1900 - 1905, and its displacement with respect to
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the instantaneous pole is calculated by the International Polar

Service from observations at five points, located approximately

along the parallel at 39° North Latitude. The invariability of

the latitude of these points is naturally assumed in this case,

since in the opposite case the concept of the mean pole would be

very indefinite.

The plane of the initial meridian is established by deter-

mining the beginning of the calculation in a common time system.

In shape the common ground coordinate system may be ellip-

tical (B*, L*, H*) and spatial-rectangular (X*, Y*, Z*).

Conversion between them is accomplished by Formulas (7.1). It

is more convenient in space geodesy to use the spatial-rectangular

system.

9. Transformation of Coordinates from One Geodetic System

to Another and Conversion to a Common Ground System

Establishment of a common ground coordinate system may be

accomplished by a geodetic system (or several geodetic systems)

by transfer of its origin to the Earth's center of mass, i.e.,

by calculating the vector Ari(AXi, Yi, AZi) of the origin of

the coordinates of a geodetic system in a common ground system.

If, moreover, the geodetic system has misalignment of the axes,

it is first necessary to rotate it by three Euler angles (e, w, A)

to achieve parallelism of the axes of the geodetic and common

ground systems. In this case the radius vector of each point ri

of the geodetic system is transformed to the radius vector r'1 , /28

where r' = Mri
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I1 -(0 A, (9.1)
AI-- ) 1 -£ l

The general transformation of coordinates of the points from

a geodetic to a common ground system may now be represented by

the expression

d-Ai- + Ar,+ (9.2)

The orbital method of space geodesy permits the calculation

of all six elements of transformation of (9.2), i.e., complete

calculation of the orientation of the common ground coordinate

system. The space triangulation method is used only to calculate

the angles which characterize the inclinations of geodetic systems

with respect to a common ground system, i.e., three elements of

the transformation (9.2).

The impossibility of relating the origin of coordinates of

a geodetic system to the Earth's center of mass by the space

triangulation method is obvious. This is determined by the fact

that ther angular measurements in this triangulation are essentially

insensitive to transfer of the origin of coordinates, and linear

measurements are generally invariant to coordinate transformations.

If transformation of (9.2) is established for each geodetic

system, the mutual shift of their origins may still be calculated

from the differences Ar'ij, and at the same time the problem of

the relationship of geodetic coordinate systems may be solved.
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In the future, taking into account the smallness of the

possible inclinations of geodetic systems, we shall disregard

them, with the exception of individual cases which will be

indicated.

10. Time Measurement Systems

A knowledge of the precise time of observations is required

for transition from a stellar coordinate system to one, rigidly

coupled to the Earth. In connection with this, we shall present

the brief characteristics of time measurement systems, used both

in astronomy and in space geodesy.

Periodic processes, whose period is constant with a high

accuracy, are used as the standards for time measurement. The

Earth's rotation was the standard for many centuries, with a

corresponding unit of measurement, days, and 1/86,400 part of a

day - the second. However, in recent decades a whole series of

seasonal, secular and irregular nonuniformities in the motion of

our planet was determined. Therefore, a unit of time measurement,

based on the resonance frequency of quantum transitions of cesium

atoms, now is used in the International SI System. This unit is

equal to 9,192,631,770 emission periods, corresponding to the trans-

ition between two super-thin levels of the basic state of an

atom - a cesium isotope with a mass number of 133 in a zero mag-

netic field. The second calculated in this manner is very close /29

to 1/86,400 part of a day and is called an "atomic second," and

the time scale determined by this unit is called "atomic time"

(AT). The clocks for AT time are atomic clocks, which consist

of a continuously operating quartz generator and a cesium fre-

quency standard, which is switched on periodically to check the

nominal frequency of the quartz generator.
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The high stability of an atomic time scale led to the fact

that it replaced the astronomical time scale during a study of

most physical phenomena, and now astronomical time is only a

characteristic of the Earth's rotation. However, when investi-

gating the position of objects in coordinate systems, rigidly

coupled to the Earth, astronomical time, which determines the

Earth's rotations with respect to the inertial coordinate system,

should be used.

Therefore, let us dwell on astronomical time systems. As

we know, the length of days is different and depends on which

point of the firmament, reflecting the Earth's rotation, describes

a total revolution (for which points the interval between two

successive culminations is taken): the point of the vernal

equinox (stellar time) and the center of the visible Sun (true

solar time) or "average" Sun - a fictitious point whose motion

is assumed to be uniform during the course of a year (mean

solar time).

Mean solar time, counted from midnight at the Greenwich

meridian, is called Universal Time. Three systems of Universal

Time are distinguished.

1. TU0 - Universal Time, obtained on the basis of direct

astronomical calculations. If time is considered as a phase

angle of the Earth's rotation in space, TUo is the angle between

the instantaneous position of the Greenwich meridian and the

declination circle of the mean Sun.

2. TU1 - this is TU0 time, into which corrections are

introduced for shifting of the terrestrial pole, caused by oscil-

lation of the Earth with respect to its rotational axis. Thus,

TUl may be regarded as the angle counted from the mean Greenwich

meridian.
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3. TU2 - this is TUl time, into which are introduced

corrections for the seasonal irregularity of the Earth's rotation.

Unlike TUo and TUl time, which are not uniform due to seasonal

variations in the Earth's motion, TU2 time may be regarded as

uniform for a rather large time interval (up to several years,

because the secular irregularities of the Earth's rotation are

essentially discernible only at large time intervals). However,

to solve various types of problems of celestial mechanics over

prolonged time segments, strictly uniform "ephemerides" time TE

with a constant unit of measurement - the second, equal to

1/31,556,925.9747 part of a tropical year, beginning on 31

December 1899, was introduced. Practical calculation of TE time

is carried out from observations of the orbital motion of the

Moon around the Earth.

As already indicated above, the TU0 time scale is obtained /30

from astronomical calculations. These calculations are made at

a number of time bureaus and then equalized by comparing readings

of time bureau clocks. Corrections to TU0 time during transition

to TU1 time are calculated from the coordinates of the instanta-

neous pole, determined by the International Pole Service. Trans-

ition to TU2 and TE time is accomplished by extrapolation of

corrections, derived on the basis of investigating the irregulari-

ties of the Earth's motion during preceding years. In recent

years, extrapolated TU2 and TE time systems have been replaced by

highly stable atomic time, which may be measured with a high

degree of accuracy (10-10° and even more accurately) in several

minutes, whereas observations over the course of a number of years

are required to obtain TU2 and TE times with such accuracy.

The precise value of the difference of AT = TE - TU1 between

ephemerides and Universal Time is calculated from an analysis of

observations of the Moon, and the approximate value of ATextrap
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is published for the current year in the astronomical yearbooks.

This value was +38.0s for 1970.5.

When calculating transition (TAl - TU2) from approximately

uniform TU2 time to atomic time in the TAl scale of the State

Standard of Time and Frequency of the USSR, it was assumed that

these times coincided on 1 January 1964 at 12hTU. This difference

was about 5
s by the beginning of 1970.

It may be discerned from the above that when solving problems

of space triangulation, in which one of the coordinate planes is

the plane of the mean Greenwich meridian, TU1 time should be

used.

For problems solved by orbital methods, a system of uniform

time, atomic time, should be used for integration of equations

of motion. To bring atomic time into agreement with TUl time,

the origin of counting in atomic time may vary periodically so

that the difference in these systems does not exceed 1is. Thus,

the scale of such atomic time will be stepwise uniform.
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CHAPTER 3

PRELIMINARY PROCESSING OF THE RESULTS OF OBSERVATIONS

11. Problems of Preliminary Processing

The results of AES observations obtained at points usually

may not be directly used to adjust space triangulation. This is

explained by the fact that these results sometimes do not contain

numerical characteristics, as is true, for example, in photo-

graphic observations: in this case the result of observations is

photographs of AES against the background of the stellar sky,

subject to further measurements. Sometimes, for example, in

radiotechnical measurements, the results are obtained in the form

of numerical characteristics related to the elements of space

triangulation by such complex mathematical functions that direct

use of these measurements in space triangulation is essentially

impossible.

In connection with this, the problem arises of obtaining from

observational materials those numerical characteristics which are

related by simple functions to the unknowns of space triangulation,

which at the same time may be obtained with a sufficient degree

of accuracy from the materials of direct observations. Thus, the

main problem of preliminary processing is to obtain "measured

values" of space triangulation with consideration of their real

dependence on the results of direct measurements. Problems of

preliminary processing also include analysis of the accuracy of

the measured values,* determination and checking of observations

*Usually, such an analysis may be accomplished only in terms
of internal conformity of measurements.
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which contain gross errors, introduction of corrections which take

into account the effect of external factors and equipment correc-

tions, and reduction of measured values to the centers of observa-

tion points.

During preliminary processing of measurement results, an

attempt is made to consider all systematic equipment corrections

and all corrections for external factors. However, there are a

number of reasons which limit measurement accuracy. For radio-

technical measurements, this is an inaccurate knowledge of the

propagation speed of electromagnetic waves in the atmosphere and /32

their refractive index in the ionosphere and troposphere, which

means the corrections for refraction are inaccurate. There are

several causes which limit accuracy for photographic observations.

Let us dwell briefly on some of them.

The accuracy of calculating the direction toward an object

from a photograph of the stellar sky depends on the accuracy of

relating the stars on the photograph to an inertial coordinate

system. In order to do this, it is necessary to have a sufficient

number of stars on the photograph, the positions and natural

motions of which are known with a high degree of accuracy.

Fundamental star catalogs, which may provide the necessary

accuracy, contain only an insignificant number of stars. Thus,

for example, catalog FK-4 (Fourth Fundamental Catalog, 1963),

which is the most accurate at present, contains only 1,535 stars.

But, as has been determined recently, this catalog contains a

systematic error of about 0.01 for right ascensions between a =

15h and a = 18h . The most complete of the fundamental catalogs,

the General Catalog Boss (published in 1936) contains about 30,000

stars. It is insufficient to process the photographs of this

catalog, because no more than 3-5 stars, available in this
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catalog, impinge on the photograph of a satellite camera, usually

having dimensions of 18 x 18 cm. It should be noted that system-

atic errors in the differences of coordinates of the Boss and

FK-4 catalogs in right ascension (a cos 6) reach 0.038 s and decli-

nation (6) 0.37", and in natural motions (for 100 years) for

right ascension, O.067s and for declination, 0.48" [55].

Along with fundamental catalogs, different photographic

catalogs are used whose accuracy is considerably lower; this is

especially true of the natural motions of stars. Moreover, there

are significant systematic inconsistencies between different

photographic catalogs (and even their individual parts).

In 1966 the Smithsonian Astrophysical Observatory published

a star catalog which included the coordinates and natural motions

of 258,997 stars from different catalogs. The positions of these

stars are presented for epoch 1950.0 in the FK-4 system. All

errors of the primary source catalogs entered the newly compiled

catalog. Therefore, the errors in star positions for epoch

1963.0 comprise an average of ±0.4". However, if approximately

100,000 stars have a mean square error up to 0.3", more than

20,000 stars have a mean square error exceeding 0.8". And since

the greater part of the error occurs due to the imprecise

natural motions of stars, by 1970 the errors of star positions

had increased.

Random errors of star positions may be partially eliminated

by increasing the number of stars used in each photograph, but

the problem of increasing accuracy may be solved only after the

compilation of star catalog AGK-3. This is an important work

which is being carried out by astronomers of many countries and

will be completed in the future.
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Along with errors in the coordinates of reference stars, /33
taken as fixed reference points, the accuracy of determining the

bearing toward AES is affected by a number of other factors, which

may only be partially eliminated by processing. For example,

errors due to the non-rigorous perpendicularity of the photographic

plane to the optical axis of the camera, inaccurate knowledge of

the center of projection, and radial distortion are eliminated in

calculations. The effect of random errors, caused by irregular

deformations of the photoemulsion layer, the negligible portion

of differential refraction, etc., may be appreciably attenuated

by selection of a large number of reference stars, located as

closely and as symmetrically as possible to the AES image. The

effect of random guidance errors on star and AES images during

measurements on coordinate-measuring machines is attenuated by

repeated guidance with rotation by 180 ° of the object being

measured.

However, guidance errors in cases of very blurred and

extended images usually systematically distort the calculated

equatorial coordinates of the satellite. Such images are obtained

if the camera objective has different discernible aberrations

(for example, a large coma), with coarse graininess of the

photoemulsion layer, due to different photoeffects. One of the

main reasons for the fact that AES images are not received as

points during observations in the tracking mode,is the poor com-

pensation for the satellite's motion. There is only one way to

reduce the effect of these errors - perfection of the observation

equipment and improvement of the quality of photographic materials.

The error most difficult to consider and correct is caused

by the scintillation effect, which occurs due to the various

turbulent motions of the atmosphere. This effect is reflected

in different ways on star images, photographed under long expos-

ures, and AES images, photographed with very short exposures.



12. Preliminary Processing of the Materials

of Photographic Observations

As a result of photographic observations, AES motions with

respect to reference stars at specific moments of time are recor-

ded on the photograph. In order to obtain angles which charac-

terize the topocentric direction toward the AES and which are

"measured values" of space triangulation, the coordinates of the

star and AES images on the photograph must be measured, the coor-

dinates of reference stars must be selected from star catalogs,

the time recording data must be processed and the measured plane

coordinates of AES must be recalculated to equatorial coordinates

for the epoch of observation.*

For this purpose, stars which will be reference points on

the photograph are first selected and their coordinates are

determined from the star catalog, i.e., the one-two-one congru-

ence of the stars represented on the photograph to stars having

coordinates in the catalog is established. This process is

called "star identification."

Star identification is usually carried out visually with

the aid of different star atlases by comparison of the star con-

figuration on the photograph with that on the pages of the atlas.

However, identification may also be accomplished with the aid of

electronic computers, by comparing the difference of star coor-

dinates in the catalog to the corresponding image of scaled dif-

ferences of the coordinates measured on the photograph. In this

case it is first necessary, naturally, to have the star catalog

recorded in the computer memory and secondly, to know rather

precisely (no more-roughly than 0.5°) the equatorial coordinates

*By analogy with calculation of star coordinates in photo-
graphic astrometry, the complex of these operations is sometimes
called satellite astrometry.
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Figure 11.

of the center of the photograph. Star identification with the aid

of electronic computers is accomplished by the method of sequential

sorting of star coordinates and does not differ essentially from

visual identification.

After the reference stars have been selected, the mutual

dispositions of AES images and reference stars must be measured.

The measurements are carried out on highly accurate coordinate-

measuring machines, which provide a measurement accuracy of 1 - 3
microns. The most widely used machine for this purpose is the

coordinate-measuring machine of the Karl Zeiss Company (GDR, Jena)

the "Askorekord" (Figure 11), equipped with electronic apparatus

for automatic recording of the readings and delivery of them for /35
printout and perforation.

The congruence between the equatorial coordinates of stars

and the measured plane coordinates of their images on the photo-

graph must now be established. For this purpose, errors for

refraction and annual aberration should first be introduced into
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the equatorial coordinates of stars, at the moment of observations

(Article 9) in order to obtain the visible coordinates of stars

corresponding to their mutual disposition on the celestial sphere

at the moment of observation.

Correction for refraction at the zenith distance is calculated

by the formula [21]

Az= -58",20 tgz- -O",07 tg3z (12z.1)
(12.1)

By decomposing this correction into components of right

ascension and declination, we have

Act Az sec 6 sin q,

A6 =Az Cosq, (12.2)

where q is the parallactic angle.

Correction for annual aberration is calculated by formulas

[21]
Ac --=Cc+Dd,

A6 = Cc' +Dd',

c= -- cos ascc6; c'=tg e cos -- sina sin 6;

d= .¥5sinctsec 6; d'--= coscsin 6; (12.3)

C =.- k cos L- cos s; D - -- k sin LO ,

where k is the constant of annual aberration and L is the longi=

tude of the Sun at the moment of observation.

Correction of the star coordinates for diurnal aberration

may be ignored due to its smallness.
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Let us now turn to consideration of the relationship between
the equatorial coordinates of stars (a, 6) and their plane rec-

tangular coordinates on the plate. The image on the plate is the

central projection from the second center point of the objective.

Let us introduce on the plate a coordinate system with origin o

at the optical center of the photograph.*

Let us take the projection of the hour circle of the point

on the celestial sphere with coordinates a = A and 6 = D, which

is projected into the optical center, as the n axis, and the

perpendicular to the n axis at the origin of the coordinates -

as the i axis. Let us determine the positive direction of the

axes by the increment of declination and right ascension, respec-

tively. The coordinates on a photograph with such a direction

of the axes are called ideal or standard in astrometry. Let us /36
consider the projection Z of any star S with equatorial coordin-
ates a, 6. The distance SO on the photograph will be

$O= FtgCo,SO 't(0, (12.4)

where w is the angle at the center point of the objective, equal

to the arc on the celestial sphere between the star and the point

corresponding to the optical center.

Coordinates C and n of the star image will be

~=Ftgwsinp,
1='Ftgccosp, (12.5)

where p is the position angle (Figure 12) and F is the focal

distance of the objective.

*The base of a perpendicular, drawn from the second point
of the objective to the plane of the photograph, is called the
optical center of the photograph.
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Let us consider the images

of the hour circles of points S

and 0 on the celestial sphere.

From spherical triangle SPO, taking

the fact into account that SO = m,

SP = 90° - 6, and OP = 90° - D,

we have

sin p sin o = sin (a - A) cos D,
cos p cos o =sin 6 cos D - cos 6 sin D cos (a- A).

(12.6)

Figure 12.

Angle w, in terms of the

to the angle between the

point 0.

The cosine of angle

of the direction cosines

property of central projection, is equal

direction toward the star and that toward

w is found as the sum of the products

for the directions OI1S and O1O.

cos o = cos 6 cos D sin a sinA cos cosDcosacos A

-- sin 6 sin D = cos(a-A)cos 6 cosD ' sin a sin D. (12.7)

Dividing the right and left sides of Expressions (12.6)Iby (12.7),

after simple transofrmations, we obtain

ctg 6 sin (a-A)
ctg 6 cos (a-A)cos D - sin D '
cos D-ctg 5 cos (a-A) sin D
ctg 6 cos(a-A) cosD-I-sin D (12.8)

(12-8)
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The inverse relation is defined by expressions

c = arctg icosD-- sin D (12. 9)

6 = arctg q cos D 4- F sinDo (a-A)
F-a cos D-- 1i sinD COS(ct- A).

However, the coordinates of stars and AES, measured on the

photograph, will not be ideal coordinates - the origin in the

coordinate-measuring machine does not coincide with the optical

center of the photograph, and the coordinate axes do not coincide

with the directions of the axes of idea coordinates. Therefore,

in order to convert from measured (x, y) to idea (~, n) coordin-

ates, it is necessary to rotate and shift the system

=ao+zXcosO-ysinO,

1l=bo- xsin0-.-ycos0. (12.10)

Essentially, the relationship between ideal and measured

coordinate systems is more complex, because central projection is

idstorted considerably due to the different aberrations of the

objective, inadequate clamping and non-equalizing of the film

during photographing, irregular deformation of the photoemulsion

layer, etc. This requires consideration of higher-order terms

in the relationship between ideal and measured coordinates.

Therefore, we usually use polynomials of the type

- a. - - ax +- a2Z-Y - a3y -- a4x2 -4 ay 2 -a 6S (z2 
J- y) X,.

O i I(12.11)
= bo + blz -F b2y - b3 y + bzx2 by+ bG (x2 y2 ) y (1.11

Each reference star, for which coordinates x, y are measured

and idealcoordinates g and n are calculated, yields a pair of

equations (12.11), which may be considered as correcting equations

for calculation of coefficients ai and bi.
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It is natural that no less than 10 - 12 reference stars

are required for a reliable calculation of the coefficients of

polynomial (12.11) by the least squares method. Having calcu-

lated coefficients ai and bi, the ideal coordinates of the

measured positions of AES may be calculated by Formulas (12.11)

and then their equatorial coordinates - by Formulas (12.9). To

analyze the accuracy, p - the error of unit weight in terms of

residual deviations vi and vn, the weight of each unknown,

obtained simultaneously with solution of normal equations for

coefficient ai and bi, and the mean square errors of AES coordin-

ates are calculated.

When the dependence of ideal and measured coordinates is

linear, the described method is called Turner's method in astro-

metry, and when higher-order terms are used, it is called Turner's

generalized method, or Turner's higher-order method.

The formulas are valid in those cases when the random errors

of the positions of individual images on the photographs are

greater than those of the coordinates of reference stars in the

catalogs.

We may assume at present that the accuracy of star coordin-

ates in catalogs is 1 1/2 - 2 orders higher than that of the

measured coordinates on the photographs. In the future, as

equipment and photographic materials improve, the errors of star

images on the photographs may be commensurable with the errors /38

of star catalogs, and it will then be feasible to take into

account the errors of initial reference stars.
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Along with Turner's relations between ideal and measured

coordinates, described above, other methods of calculating the

ideal coordinates of AES are also used. For example, three

reference stars, located at the apexes of a triangle, in approxi-

mately whose center of gravity the object is to be identified,

are used in Schlesinger's method [68]. The coefficients Di are

calculated from the measured coordinates of the images of three

reference stars (xi, y1; x2, Y2; x3 , y3) and the object to be

identified (xO, yo). Then, by using these coefficients and the

ideal coordinates of reference stars i' i (I i = 1, 2, 3), we

calculate the ideal coordinates of the position of the AES to be

determined from the formulas

DI - (x2- xo) (Y3-yo)-(Y2 - oY) (x1 - Xo),

D2= (x, - xo) (I-- YO) - (Y3 - Yo) (Xi-- Zo),

D3 = (xl- xo) (Y2-Yo)-(Y 1 -yo) (x.-Xo),

D - (x2 - Xi) (Y3 - Y) -. (x3 - X) (Y2 -- Y) (12.12)

aD1 1 '±-D22 +D 3 t3

Dli, D;, 12 + D3113
Dlo =- lrl D '2D3

Deych's method [13] is based on the linear-fractional rela-

tion between ideal and measured coordinates

aix + aI 2y-4 a13
aa~l+a 32y -tI

- a__xa2Y+_ (12.13)
a3lX + a32Y +-

and uses the correcting equations

v, =anz . a,2y -al 3 -- a3alz -- a32y - (12.14)

V a2 a22y 3-a3(12.1)x-a32Y --vn == a.2.x -t 22yI- a.23 --aalxq --a3 2yq--1].
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Figure 13.

There are a number of graphi-

cal and graphoanalytical methods

in addition to the analytical

methods of processing photographs.

As an example, let us cite one

method, proposed by Pulkovo

astronomer A. A. Kiselev [27].

;S.

In Figure 13, S,, S2 and S3 are the reference stars, So is

the position of the AES and N is the auxiliary point located at

the intersection of the straight line connecting both reference

stars and the straight line connected the third star and the

position of the AES. We initially calculate the equatorial coor- /39

dinates aN and 6N of auxiliary point N

tg (a, _ a ) = P. Aa]

to 6N = [tg 61 sin (a,-aN) -I tg 8.2 sin (ail.-a,)] coseo Auf,
(12.15)

where al, 6 1, a2, 62 are the equatorial coordinates of stars SI

and Sz; aN, 6N are the equatorial coordinates of auxiliary point

N;
Ac = 2 -- al;

a -. (al +X,);

m .m1  drArd cos 62
i- n )F2 / cos61

P +/n C irr~)cos 6'

F is the focal distance of the camera;

r -(" + r2);

Ar =r2-rl;
I ,

r,__(,/,-l __ 0o. tS)2L(/. - O. ,tS)2;

r, - (xi - xb t S)I- (u2 -11 . td;

(XO 3) + o (x 3 - x1 ) -+ Y3 (x 1- o)
P Y3 (Xo- Z2) + Yo (x 2-x3) + Y2 (xa3--Xo)
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After the coordinates of point N have been found, the coor-

dinates of the AES position (So) are found from points Ss and N

in a like manner.

Having obtained the ideal coordinates of the AES by one of

the above-described methods, its equatorial coordinates may be

calculated from Formulas (12.9). The equatorial coordinates of

the AES will be in the same system as those of the reference

stars. Because of the mutual motion of the AES and the Earth,

the bearings toward the AES do not undergo annual aberrational

displacement; therefore, the coordinates of the AES, obtained

from the visible coordinates of stars, will be true, distorted

only by the effect of refraction. The aberration caused by

motion of the AES with respect to the observer is usually calcu-

lated by introduction of correction at the moment of observation,

similarly to planetary aberration (Section 14). In order to

eliminate the effect of refraction, we should introduce correc-

tion for refraction with a sign opposite to that of correction,

introduced into the star coordinates. Moreover, we should take

the fact into account that refraction has a different effect on

stars, which we may assume to be infinitely distant, and for the /40

satellite, which is located at a finite distance. The correction

of the zenith angle of the satellite Az will be

A = 8,0 tg ,0"O7tg3 z t z see z, 6
d tzsOCZ, (12.16)

where d is the distance to the AES in kilometers. The last term

of this formula is called the "refraction parallax."*

*In Weiss's investigation of 1960 [ll], the coefficient is
assumed equal to 435.0" rather than 481.6", and the last term of
formula has the form (435"/d) tg z sec z (1 - e0.13 65d cos z).
This divergence is negligible within the accuracies of the AES
direction obtained at present.
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In some cases [46], visible rather than true coordinates of

reference stars, and their average values for the catalog epoch

are used. Only the natural motions of stars are taken into

account and only equatorial coordinates of the AES for the same

epoch are obtained. In these cases, the coordinates of the AES

are reduced to their true position. Computational operations are

reduced somewhat with this method, but residual errors may occur

due to the differential effect of refraction and aberration.

Besides the motion of the Earth as a solid, which is taken

into account by reduction to true positions, the effect of

motions of the poles in the Earth's mass should be taken into

account, and corrections are introduced into the measured equa-

torial coordinates of the AES due to variation of the pole by

formulas similar to the formulas for correcting latitude and

longitude [21].

Aa=- Ay:= -- [ycos v-xsinll ] tg 6,
-A -xcos--ysiniy, (12.17)

where x, y are the coordinates of the instantaneous pole.

At observation points, cases may be encountered when they

use different equipment for observations of AES, spaced at some

distance from each other. In this case, the problem arises of

reducing the measurements to a single point, used as the center

of the observation point. For such reduction, the elements of

reduction, similar to the centerings in ordinary geodetic or

astronomical measurements, must be known with only the difference

that, besides measurements of horizontal distances, excesses

should also be measured without fail. We shall assume that all
the required measurements have been completed and the differences
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of the rectangular geocentric coordinates (u, v, w) of equipment

for observation of AES and the center of the observation point

have been calculated.*

Let us find the extent to which the "measured values" of
space triangulation - the equatorial coordinates of AES -

change upon conversion from an observation point with coordinates

X, Y, Z to a point with coordinates X + u, Y + v, Z + w. After

differentiating (15.2), we obtain, after elementary transforma- /4I

tions of correction for centering,

u sin y v cos V
pCf pcos8 (12.18)

i Cos 1 sin 8 1 v sin y sin S8 w cos
P P. P

As can be seen from Formulas (12.18), distance p must be

known to calculate corrections to equivalent coordinates a and 6.
Since the distances between different installations are usuallly

small, it is sufficient to know the value of p approximately.**

13. Preliminary Processing of the Results of

Doppler and Laser Measurements

As in photographic observations, those numerical character-
istics which are further called the "measured values" of space

triangulation, may not be immediately obtained from direct

measurements in radio-technical observations. Only certain para-

meters of the propagating radio signal (a light signal in the

*When calculating u, v, w, it is unnecessary to know the
coordinates of the center or of the equipment, but it is impor-
tant only to obtain the correct increments of the coordinates.

**In some cases, measurements may be included in equaliza-
tion which are not reduced to the centers of observation points,
but the coordinates obtained are corrected for values of u, v,
w after completion of equalization.
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case of laser observations) are recorded during observation.

Such parameters may be: variation of signal frequency received

from the AES, compared to some reference frequency of the ground

observation point; phase delay of the signal relayed by the AES;

and phase difference of the signal received by two spaced anten-

nas. The following may be obtained from these measured para-

meters: in the first case - the topocentric radial velocity of

the AES and the difference of distances to two positions of the

AES; secondly - the range to the AES; and third - the angle

between the bearings from the AES to the antennas.

In the process of measurements, the signal coming from the

AES, after a number of transformations, is usually fed into the

recording device, which gives the corresponding numerical charac-

teristic. Further processing of observations consists in decoding

the readings of the recording device, calculation of the prelimi-

nary values of the measured parameter from the numerical charac-

teristics, and their elimination by equipment corrections and

corrections for refraction in the atmosphere, ionosphere and

troposphere. The nature of numerical characteristics and the

method of preliminary processing depend on the method of signal

transmission and the receiving apparatus used.

The distance p to the AES is obtained directly as a result of

laser observations. However, this distance is related to specific

values of atmospheric temperature To and pressure Po. Therefore,

during preliminary processing, it is corrected by corrections /42

for AT = T - To and Ap = p - Po

Ap) -a+b Ap AT- +cH
sin h + 1o-ct+ h ' (13. 1 )

where a, b, c are constant coefficients; T and p are the temper-

ature and pressure measured at an observation point at the moment
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of observation with an accuracy up to 0.1° and 0.2 mm Hg,

respectively, and To and Po are the initial values of the same

parameters; h is the angular elevation of the AES above the level

of the observation point; and H is the height of the observation

point above sea level.

Moreover, correction for equipment delays is introduced into

the measured range. If necessary, the measured range is reduced

to the center of the obervation point by formula

cp=ucos¥g4vsiny+wsin6 (13.2)

The recording devices of Doppler equipment usually yield

the numerical characteristics, equal to the Doppler frequency

shift within a specific calculated time interval.* As already

indicated above, this shift is proportional to the difference of

the distances between the positions of the AES at the beginning

and end of the computational interval. Therefore, preliminary

processing is reduced.to calculating the difference of distances

Ap within the calculated time interval from the numerical charac-

teristic N, or to obtaining p - radial velocity, which may be

accomplished by dividing the difference of the distances by the

calculated time interval. Moreover, in view of the non-linearity

of variation of radial velocity, the value of p obtained will not

be related to the average of the calculated interval. The values

of Ap and p obtained should be corrected for refraction of the

radio beam in the ionosphere and troposphere and for the relativ-

istic effect [25]. The latter two corrections are sometimes

disregarded [47], and two coherent frequencies are used to

*For example, this interval is equal to 10 seconds for the
French Diadem satellite.
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eliminate corrections for the ionospheric refraction from the

satellite. Thus, for example, the Diadem satellite emits two

frequencies: FsO0 = 150 MHz and F4 00 = 400 MHz. The frequencies

received at the observation points are equal to

ho400 = F 400o + AF400 - +

fIo =F150 + AF150 + k=2

where k/F is correction for ionosopheric refraction of first

order; F400 and Fls 0 are the emitted frequencies; f40 0 and fls50
are the frequencies used; AF400 and AF15s0 is the Doppler fre-

quency shift; and e1 and e2 are corrections in frequency for

different equipment and external factors.

The frequencies in the receiver are equalized and a mixed /43

frequency is fed to the recording device, equal to f400o -

(3/8)f1 50, free of the effects of ionosopheric refraction

oo- +Fj5o=F 40oo-IA 4oo400 ---( (F4 00 AFo4 00) -4o

3 k
8 _ +5'z3

8' -8 -d + s -- ( F= A1j'4 )' -4 -I- l 62-
8 F4 0 0

One of the important stages of preliminary processing of

Doppler measurements is calculation of the so-called frequency

substitution error. The fact is that numerical characteristics

N are recorded at ground observation points, which are equal to

N = C (I At-f ' At'),

where C is a coefficient dependent upon frequent multiplication

in the ground equipment; f is the frequency emitted by the satel-

lites; f' is the frequency of the standard generator at the
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observation point; At' = l0s is the measured interval used to

obtain a single numerical characteristic; t'f and t'D is the time
f D

of the'beginning and end of the measured interval at the obser-

vation point; tf and tD are the corresponding t' and t' time ofI f DfD

the beginning and end of frequency emission from the AES.

Frequencies f and f' are not known precisely due to instabil-

ity of the generators, but only their nominal values f and f'!H

are known. Therefore, the following corrections should be intro-

duced into the measured value of N

Aff = (f - f')At' - (fn - ft n)At'

The difference of (fn - f't) is called frequency substitu-n :n

tion or the frequency pedestal. Because of the slight decrease

in frequencies of the ground and on-board generators during small

time intervals, it is assumed that correction of frequency substi-

tution Aff is constant during the measurement session. This value

is calculated if it cannot be determined by the apparatus method,

simultaneously with preliminary refinement of the orbital para-

meters of the AES.

If necessary, the derived valuesof Ap should be corrected

for reduction to the observation point center by the formula

C i?, It (cos ¥1-cos Y2) - V ( sin '- -si nY2) + wV (sinl 6 -- sin 6l .

14. Processing of Time Recording Data

An independent process of preliminary processing is calcu-

lation-of the time of observation of the AES.
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Only simultaneous (synchronous) observations of the AES from

two or more observation points are used for construction of space

triangulation. Synchronization of observations is provided by

transmission of a brief light flash or, in the case of observation /44

of passive AES, by reduction of the time-overlapping observations

to a single moment, called the synchronous moment.

The time of photographic observation of AES at the observa-

tion point is understood as that moment to which the calculated

equatorial topocentric coordinates of the AES are related. This

time is:

- the average moment assumed for processing the star expo-

sure when observing the light flash of an active AES by fixed

cameras; and the selected synchronous moment when observing

passive AES;

- the moment of transmission of the light flash from an

active AES during observation with star-tracking cameras, and
the selected synchronous moment during observation of passive

AES.

The time of radiotechnical observations at a given observa-
tion point is understood as the moment to which the measured

parameter is related. For example, this time for Doppler measure-
ments is the middle of the calculated interval of frequency

reception.

When processing any time recording data at the observation

point, the scale of the instrument recording time must be com-

pared to the radio signals of precise time.
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Since the precise time signals are transmitted in a uniform

atomic time system, additional corrections for conversion to the
TUl system must be introduced. These corrections are calculated

from astronomical observations and are published in bulletins

entitled "Standard Time at Mean Moments of Radio Signal Trans-

missions," published monthly by the All-Union Scientific Research

Institute of Physicotechnical and Radiotechnical Measurements

(VNIIFTRI), Corrections T for reduction of the moments of radio

signal transmissions to the TUl system are given in these bulle-

tins for all Soviet and a number of foreign radio stations. In

order to convert from a TUl to a TU2 system and from a TAl sys-
c

tem, if necessary, additional corrections of At (for seasonal
s

variation of the Earth's rotation) and (TAlc - TU2) are given.

Due to the fact that radio waves propagate with a finite

velocity, correction for standard time should be added to the

correction of Tp for the propagation velocity of radio waves

d
T C

where d is the distance from the transmitting station to the

observation point, and c is the propagation velocity of radio

waves.

Let us consider in more detail the problem of recording and

calculating the time of photographic observations.

As indicated above, when observing flashes by star-tracking

cameras, the time of production of the light flash on board the

AES must be known. A time bureau at the observation points is

optional in this case. For this, highly stable clocks, which

control the operation of the on-board equipment and at the same

time the program for transmission of the flashes [72], are

65



installed on board geodetic satellites of the ANNA and GEOS type,

in addition to the equipment to produce the light flashes. The

radio signals from the on-board clocks of the AES are received

by special ground time bureaus* and these signals are compared

to the radio signals of precise time. Thus, calculation of the

flash time reduces to comparison of three time scales: (1) the

radio station transmitting the precise time signal (T); (2) the

ground time bureau (tH); and (3) the on-board clocks of the

satellite (tb).

Corrections for the readings tH of the time bureau clocks

to reduce them to the TUI system will be

At T + T + Tp +Td - tH

where Td is the signal lag during passage through the time bureau

receiver of the observation point.

Correction for the readings t*b, of the on-board clocks at

the moment of the flash will be

At* = t*H + At*H + T* + T- Tbb HH p d

where the superscript (*) denotes that the readout (correction)

refers to the moment of the flash, and T* and T* are the signal
p d

passage time from the AES to the ground time bureau and the delay

of the time signal in the transmitting apparatus of the AES,

respectively. The time of the flash will be

T*= Tb + AT* b.

*This time bureau may be regarded as the time bureau of the
observation point, if it is equipped with highly accurate quartz
or atomic clocks, regulated systematically against the State
time and frequency standard.
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If the flash is photographed by a fixed camera, the bearing

from the observation point to the satellite will be rigidly

coupled to the Earth and will not participate in rotation of the

celestial sphere; therefore, angle y will not vary during the

time of observations, whereas angle a varies by a value equal to

the difference in the time of receipt of the star image and the

flash. Consequently, recording the moment of the flash image

receipt is not required in this case for space triangulation,

but only the time of receipt of the working images of reference

stars must be known, with an accuracy providing only calculation

of the diurnal rotation of the Earth.

When observing a passive AES, the use of star-tracking

cameras does not free one from the necessity of having high-speed

shutters and time recording equipment. The time of each exposure

of the satellite is determined in this case by the clocks at the

observation point. The clocks are compared to the radio signals

of precise time in order to reduce them to the TUl system.

As a result of simultaneous photography of passive AES,

pictures containing 10 or more point images of the satellite are

received at a number of observation points within an overlapping

time interval. The time T recorded by the clocks corresponds to

each such image.

In the case of observing passive AES, this method permits /46

the coordinates of the AES, uncorrected for satellite aberration,

to be calculated. Introduction of corrections for satellite

aberration into the AES coordinates, obtained by the photograph,

is equivalent to introduction of corrections at moment To.

Therefore, it is possible to introduce its own correction for

To for each observation point, equal to
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ATo=- D
C

where D is the distance to the AES at the moment of observation;

and c is the average speed of light propagation along the path.

The coordinates x0, Yo of a fictitious flash are calculated

for each photograph from moments T and the observation point

images of the AES measured on the coordinate-measuring machine.

It is sufficient to use an approximatly by the least squares

method with a third-power polynomial
x= ao+al '+a 2 T2 - a3 T3,

y =bo+b'+b2T2 ba7'3.

Finding coefficients ai and Zi (i = 0, 1, 2, 3) and substituting

synchronous moment To for T, we calculate x0, yo - the rectangu-

lar coordinates of the fictitious flash at the synchronous moment

of time.

When processing AES photographs by this method, the exposure

time of the AES must be known with a high degree of accuracy in

order to take into account not only the effect of the Earth's

rotation, but the natural motion of the satellite as well.

We note in conclusion that all the assumptions of this

section apply to the space triangulation method.
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CHAPTER 4

SPACE TRIANGULATION PROCEDURE

15. Measured and Unknown Values of Space Triangulation

The main volume of measuring information for space triangu-

lation are synchronous photographic observations of AES against

the background of the stellar sky. Angles y and 6, obtained from

preliminary processing of these observations, are taken as meas-

ured values in equalizing space triangulation.

Moreover, the distances to the satellite p or the difference

of distances Ap to two of its adjoining positions during one

passage, which are also included in equalization of space triangu-

lation, may be measured from separate points. These measurements

are usually made simultaneously (synchronously) with the photo-

graphic measurements.

The unknowns of space triangulation are the coordinates of

the observation points and positions of the AES. The former are

required unknowns, because their derivation is the main purpose

of space triangulation, and the latter are auxiliary unknowns.

In individual cases, the AES coordinates may generally not be

calculated.

The functional dependence of measured values and unknowns

of space triangulation is established by Expression (2.1), which

in coordinate form in the spatial rectangular coordinate system

has the form
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· -X =-.Axik pik COs ik COS lih,

Yk - Y-A= AYik Pi kCOS 6ik Si]I i,(15.1)
Zk- -- AZik -- Pik sin 8k.

From (15.1), we obtain an expression for the measured values

directly in terms of the unknowns

ik = arct, Ay:k, (15.2)

6k-- arctgA

Pk, a
P Ya = / ':?;+- ,h tyq- h-zk.

(15.3)

The expression for the measured difference of distance is /48
obtained for the unknowns from the two Equations of (15.3),
compiled for a single observation point i and two AES positions

(k = 1.2),

'Apit,,:- = Azilq- AU2.,, t- A-a,- ]/azi/,,4-. Ayi2, -i-A2 Azi,.

(15.4)

16. The Principal Elements of Space Triangulation

Each space triangulation process may be regarded as a com-
bination of a number of geometric elements, the main ones of
which are: the vector connecting the observation point and the
AES position, the plane of synchronization and the vector con-
necting the two observation points.

The orientation of each of these elements may be determined

from the results of only photographic observations without intro-
ducing any other additional data.
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The bearing from the observation point i to the satellite

position k is calculated directly from the results of observations

- angles Yik and 6ik. Moreover, it may be characterized by

coordinates Z, m and n of the unit vector of this bearing (its

direction cosines)

liP COS 6ik COS Vik,

m,17=cos = ii sin 5'*, (16.1)
nik = Sill 61k .

Each two bearings from observation points il and i2 toward

the satellite position k determine the plane whose vector equation

has the form

0i.-X, ) -dzdQ2h = -0. (16.2)

where Ri and Ri are the radius vectors of observation points

i1 and i2; ak and dok are the unit vectors of the bearings to

the AES. Equation (16.2) is the result of the simultaneity or

the synchronism of observations; therefore, the plane which it

defines is called the synchronization plane.

In coordinate form, Equation (16.2) assumes the form

Ak AXj1, + Bk AYj,~, - Ck AZi,i, =0. (16.2')

Coefficients Ak, Bk and Ck are calculated from the measured values

using (16.1) by formulas

Ak -- rhn.,,f- jmnt~l, .

Bk -= -iik lihlhi . / O,\ N (16 .3)

Ck -- midsluice-nl1i,}tli2Z- 4h 8oa
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The normalizing factor of the equation of the synchronization

plane is equal to the sine of the angle between unit vectors dl k

and i2k i.e., to the sine of the angle of intersection of

bearings toward the satellite (Sk) Therefore, the direction

cosines of unit vector P, normal to the synchronization plane,

may be calculated from the formulas

mt= -sin Pk

m Lk (16.4 )
Ck

nk =-

Sill k V I--/ (l1 'hi 2 ,h -- i 11Jni,,h +- ?zi,hri,?.

If two AES positions (k = 1, 2) were observed from points

il and i2, consequently, two synchronization planes and two unit

vectors - normal to them (Figure 14), were obtained. The

vectors 0 and define the plane, the normal of which is the

direction of the chord which connects the two observation points

(ii and i2), i.e., the direction vector nili2 of this chord is

A 2

rji,= --- t, (16-5)

The direction cosines of the

chord in accordance with Formula

! o '~ (16.5) are calculated by expres-
*k 2 ~sions

i,- sin ?, sin ;l sill p2 1 2-

Figure 14. sin1 (si 166)

1 - observation point, - -
2 - AES position; 3 Ni, sin sinip 2 (B-B).
measured direction.
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where X is the angle between the synchronization planes.

By analogy with y and 6, angles A and D are introduced which
characterize the slope of the chord to the plane of the equator

(angle I) and in projection on the plane of the equator to the

OX axis (angle A). Henceforth, we shall call them orienting

angles. In accordance with Expressions (16.1), they are calcu-

lated by the formulas

Aii, =-- arctg -- )',

w-~ :-: rctg-.,._M.W

The equation of the synchronization plane (16.2), after

dividing it by Dili2 (the length of the chord), reduces to the

form
AkLIi, -|- BkSIai. -v CkNi, C0.

(16.8)

Transforming (16.8) with consideration of (16.7), we obtain /50

tg Liik Sin (Siit i-E Vi ) -+ tg iW, Sill ( ¥i'h'-- Aa2) -(16.9)
-]- tg fijip, sin (i , -- ih) = -.

Expression (16.9) contains the spherical coordinates of

three observation points at which the bearings ilk, i2k and ili2
intersect the celestial sphere. It then follows from Formula

(16.9) that all three points are located on a single arc of a

large circle, which is the trace of intersection of the sphere

with the synchronization plane. In the literature [41] this

circle has been named the circule of simultaneity. A number of

problems of space triangulation, for example, calculation of

chord directions, may be solved both in spherical and in three-

dimensional rectangular coordinates. In the first case, the
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equation of the circle of simultaneity is used and in the second,

the synchronization plane equation is used. Taking the fact into

account that there are linear measurements in addition to angular

measurements in space triangulation, as well as the simplicity of

writing the formulas and calculations, a three-dimensional rec-

tangular coordinate system is usually employed in space triangu-

lation. Therefore, use of the circle of spontaneity will no

longer be considered.

These elements, due to their orientational nature, facilitate

space triangulation, if its scale is defined by even one basis

- the length of one of the vectors of the observation point-

satellite or observation point-observation point.

The combination of linear measurements with synchronous

photographic observations permits a direct calculation of the

length of the observation point-satellite vector Pik' as well as

the length of the vector connecting two observation points - the

length of chord Dij.

Thus, if the bearings toward the AES position k are calcu-

lated from two observation points - the ends of chord i and j -

and, moreover, the distance from observation point i to this

position Pik (Figure 15) and since

D,] sin k
P sill pI '

then

' I t (liklik + m ikrnikt niknik)2 (16.10)
-(L 4-A rnp~M1 i +l ?jkNij,)2
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*

1i

Figure 15.

1 - measured distance.

4

J

. *k

e-> Measured difference
- *2 in distance

Figure 16.

If the distances to the AES position are measured from two

observation points - the ends of the chord, then

Dii --- /p, +- Pji -. 
2 P-kPik (ll}4k 'i m ,+ ikmik -I: iknik). (16.11)

If the bearings from the observation points - the ends of

chord i and j - toward two AES positions kl and k2 and, moreover,

the difference of distances to these AES positions (Figure 16)

from one of the observation points (i) are calculated, then on

the basis of

AP-'Plth' Pu~=:D sill D, siln 'Ap - Pik - piIl. = D11 (ii i

we obtain

D =Ap1/(1-cos2 ) (1 -COS 2 h, )

(16.12)

where ;k , =lilj, -tnihjt.l' 1 iznjl etc

Cases are possible when the components of the observation

point-observation point vector are included directly in equaliza-

tion of space triangulation as "measured" or "fixed" values.
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The value of these components may be obtained, for example, by

processing geodetic measurements, made on the Earth's surface

(the basis of space triangulation), or from a previously adjusted

space triangulation network.

The relationship of these "measured" values - the orienting

angles of chords Aij and bi or of the length of chords Di to the

unknowns of space triangulation may be represented by expressions

similar to Expressions (15.2) and (15.3)

AYti .
Aiq= arctg AXi

AZii (16.13)
i = arctg Vzfa -AY

D I= ij + A YlI A+AZ.

Similar to the manner in which the measured bearings of

ordinary triangulation form triangles, permitting sequential cal-

culation of the coordinates of triangulation points and forming

the triangulation network, the combinations of measured values

and elements of space triangulation form figures which facilitate

calculation of the coordinates of observation points. Space tri-

angulation may thus be considered as a combination of separate

figures.

We shall consider in detail below the principal types of

figures of space triangulation. In this case only elementary

figures will be considered, i.e., figures which contain a minimum

number of measurements in input data, required for calculation of

the position of the observation point.
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17. Elementary Figures of Space Triangulation, Constructed

From Photographic Observations of AES

Three-Dimensional Angular Intersections

If two AES positions (k = 1, 2) were observed from two

initial (i = I, II) and one calculated (J = III) observation

point (Figure 17), calculation of the coordinates of the point

being determined may be accomplished by sequential solution of

two direct intersections and one inverse angular intersection.

2 In the general case, the

I, *result of errors in observations,

j -k2  the bearings pik from the observa-

I, 4 I tion points toward the AES posi-

J ' Itions do not intersect. To derive

A the intersection formulas, we
AX ___ shall assume that the bearings do

intersect, i.e., the conditions

Figure 17. of coplanarity are fulfilled

(pixPIDiII0, (17.1)

(Pll 1 x Pll 2) P1 2 0-

The method of satisfying these conditions will be considered

in the section on adjusting calculations.

Based on the solution sequence, let us determine the posi-

tion of the satellite k = 1. For this, we write the condition

of the sum of three vectors

Di + 1 + 1 2 = 0) (17.2)
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or in projections on coordinate axes

(XI - XII) + Pl I Cos Vi 1 cos 61 1 - Plt 1 Cos 1 1 1 cOs 6 11 1 =o (17.3)
(17.-3)

(YI -- Y)+P,, sin VI Cos 1--pl, I sinV1n1 cos 65 l _O,

(ZI-ZII) -f- P1 1 sin 8 1 1- Pl 1 sin 6n 1 =.

From the solution of any two equations (for example, the

first and second), we calculate the distances from the observation

points to the satellite

P I = [(Xi - Xl) sirn ¥l l- (Y1 - Yl) COS ), ,] see OC l COSoC (¥I ;- - l l);

p I := [(X 1-- X) sin 117 - (Yll- YO cos¥lx x (17.4)

X sec n1 1 (¥e 7I It - II ' )-

The third equation of (17.3) controls the calculation.

We obtain formulas directly from Equations (17.3) to calcu- /53

late the satellite coordinates.

XI '-= Xl + Pl 1COS ¥i 1 COS 81 -- Xll 4- Pl 1 COS u IC cOS 6 IJ t;

y1= Y1 l+P1 sinll71ICOS - Yll-p-p1 1 sinTi1 COS S 1; (17.5)

Z --: Z1 - Pl 1- 611 I-

Instead of calculating the values of pI1 and pII1 , we may,

by eliminating them from Equations (17.5), obtain formulas for

calculating the satellite coordinates in the form

Yll-Yl -- Xltg ¥I 1-Xl tg Y _II ;
xi tg V'I 1- tg Y1 1I

X-X -- ctg+'l -ctg ' 1 Y1 (17.6)
't II- 9T (17 .6)

z= Zl +-Axn sec ¥t tgo 6 1 ZI q-- Z-Ayl cosec Y I tg 61 ;

Z = ZIn -- Ax,1, sec ,, 1 tg 61 1 -ZI --- A Y1II cocos ¥ 1 tg 6nl 1-
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The last formula is for control of the calculations. It is

obvious that the first two formulas of Expression (17.6) are

obtained as formulas of plane intersection in projection of the

three-dimensional construction on the equatorial plane. If the

angle of intersection in the equatorial plane (yII1 - YI1) is

too acute or obtuse, we may obtain similar formulas from (17.5)

by projection of the entire structure onto planes XOZ or YOZ.

The coordinates for the second position of the satellite

are calculated in a similar manner, and for this, it is sufficient

to replace subscript 1 by 2 in Formulas (17.5) - (17.6). From

the calculated coordinates of two satellite positions, after sub-

stitution of subscripts I and II by 1 and 2, and also 1 by II in

Formulas (17.5)- (17.6), we obtain the coordinates of the obser-

vation point being determined (XIII, YIII' ZIII).

The time of each observation is assumed to be known in the

construction considered. Of special interest is the special case

of a construction, when the flashes of an active satellite of the

GEOS type are observed, and the time of flashes are unknown with

the required accuracy and, consequently, the angle y for the

moment of the flash is unknown. In order to use such observations

for space triangulation purposes, it is necessary to either fix

the time of star exposures, which is possible when the cameras are

operating in a fixed mode, or to calculate the right ascensions

of the flashes at the moments their images are obtained, for

which the cameras should operate in the star-tracking mode (see

Section 14). In the first case, the calculations do not differ

in any way from those considered above. In the second case, the

moments of the light flashes must first be calculated. For this,

the first two equations of (17.1) may be used. After simple

transformation of the first equation of (17.1), we have
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a cos S-I-b sin S1--c = 0,

where

a = tg6 1 1 sin (Al 11-ll 1 ) -tg 611 sin (Ai 1 1 -al ),

b = tg 61 lcos (A 1,--all 1 )-tg 6 11 cos (A 1I-al 1 ),

c = sin (an 1--l 1) 1g 0 If1

From the solution of Equation (17.7), we calculate the value /54

of Sl.

S1 = -arcsin ( cos p) -- q, (17.8)

where
aq)= arctg .

The time of observation of the second AES position, S2, is

calculated in a similar manner from the second equation of (17.1).

After this, the coordinates of two positions of the satellite and

of the point being determined are calculated in sequence by the

method of three-dimensional angular intersections.

It is easy to see that each position of the AES must be

observed from not less than three observation points - two

initial and one calculated - during transfer of the coordinates

with intermediate calculation of the time of the flashes. Con-

sequently, the construction of the elementary figure of space

triangulation shown in Figure 15 is compulsory in this case,

unlike observations with fixed time, when, as will be shown below,

the coordinate transfer is also possible through observation of

the AES positions from two points.
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Let us note the possibility of

calculating the coordinates of the

- kobservation point being determined

during observation of AES flashes

at this point by fixed cameras in

the absence of a time bureau. In

_--r this case, the measured values

should be assumed to be only angles

6 and, in order to determine the

point, it is necessary to observe

four AES positions from it, whose

Figure 18. coordinates are calculated by obser-

vations from initial observation points. The formulas required

for calculating the coordinates may be obtained from the four

equations of (15.2), compiled for measured angles 6.

Intersection of Synchronization Planes

Depending on the mutual distance of observation points, the

nature of satellite trajectory, visibility conditions and a number

of other reasons, it may be that each position of the satellite

is observed simultaneously from two points only: the calculated

and the initial ones. Such a construction is shown in Figure 18.

The previously considered method of obtaining the coordinates

of the observation point being determined by three-dimensional

angluar intersections cannot be used in this case. Let us write

the Equations,(16.2) for three synchronization planes, formed in

a single construction plot,*

((I, x? pl~lll c O -I(pi, 2 X PIIJ S) DI, il __

IPII 1 X Pill I IP,.2 X fill 21
(pl 3 x flll a) DI Ill =0

I P X P)ll 3 I

*The initial observation points are denoted in the equations
by subscripts I and II, the calculated observation point - by III,
and the AES positions - by 1, 2, 3.

81



A1XI, -[- B. YIj -I- CZmIII -t Wl. 0,

A2X11I - B 2Y 1 -1- C27-Zi -1- W2  0, (17 . 9)(17.9)
A3X 1 '1- B3YIIJ +- C3ZI7 -1- W -3 O.

where

W, : -- A,Xi -BYi-- CZt,

v=1, 2, 3

i=II at v=l,

'i= at -v==2,3.

We obtain the coordinates of the observation point to be

determined from solution of the three Equations (17.9), in which

there are three unknowns.

Angular Intersection of Chords

If two positions each of the AES are observed from the ends

of each bearing, connecting the initial and calculated points

, *2 (Figure 19), to solve the problem we may use
\ the bearings of the chords between the initial

observation points iI and iII and the calculated

/. . observation point JIII. To calculate the bear-

/ ing of each of the chords (orienting angles),

connecting two observation points (for example,
Figure 19. i and iiii), we write the conditional equations

of the synchronization planes resulting in this construction in

the form. (px )
(PIl X Pmi 1) D I i |l

(PI I X sPI,, 2) DI 11, p
I(P 2 X 'PI 1 2) DI I

(I 2(I, 2 n ) DI m1 .I
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or

A1L I III -+- B1 MI III -- C1NI III = 0

A2Li III B2A 1 11z i , - C2NI III -- (17. 10)

Taking the fact into account that the direction cosines L,
M and N are related by a single condition (L2 + M2 + N2 = 1), it

is sufficient to find two of them, or two of their ratios* from the

solution of Equations (17.10). Having divided Equations (17.10)

by one of the unknowns, known to be different from zero, for

example, by N, we obtain

(IV IIIQ B1 At)I~l+Cl=01(17.11)
A2 (-)I + 1 1 ± 2 ( )11III+ C2 = 0.

We find the ratios of the direction cosines from the solution /56

of Equations (17.11) and, taking the fact into account that

L = cos I cos A,
M cos c) sin A,

N = sin (),

we calculate the orienting angles of the chord

I

- - 1SIIII-= rct [(A;) II ( t D II],/(17.12)

(I) a III +-' a('tg -( MI III:, ]I iiJ.,V)jl+ : 21]l 1-2

Anglesi I III and II III' which characterize the direction

of the chord iII -JIII' are calculated in a similar manner.

*Instead of the ratio of the direction cosines, in a number
of papers the ratios of coordinate increments are calculated,
which is the same thing.
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Expressions (17.11) and (17.12) acquire a somewhat different

form when divided by LI III 0 or MI III 0.

The coordinates of observation point JIII being determined

may now be calculated from the formulas of three-dimensional

intersection (17.3) - (17.6), substituting in them the values

y and 6, respectively, for A and 0.

18. Elementary Figures of Space Triangulation, Constructed

from Combinations of Photographic, Doppler and

Laser Observations

The elementary figures for determination of the position of

observation points, formed by combined observations, are very

diverse and may be both simpler and more complex than the figures

constructed only from photographic observations.

If the elementary figures of space triangulation, considered

in the preceding section, provided only synchronous photographic

observations, they may also contain bearings obtained from

asynchronous photographs when combining photographic observations

with measured distances or the differences in the distances of

the figure.

Let us consider individually the elementary figures for

determination of AES positions, and then - the observation points,

since it would be very cumbersome to present all possible combi-

nations of simultaneous determination of AES and observation

point positions, which would only make it difficult to solve the

problem.
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Linear-Angular Intersections in Space

The simplest will be the elementary figure formed if the

direction (angles y and 6) and length (p) of the observation

point- satellite vector are determined (Figure 20).

The coordinates of AES position may be obtained from the

formulas of polar intersection in space:

k= X, + PX k tCOS ik cos Ylk,

Yk = Yli+ Pik COS 6 Ik Silk (18.1)ik
Zk= Z + Pk Sin 6 1k..a*=ZIpi/sno~k(18.1)

On the other hand, if the position of the AES is known, we obtain /57

the coordinates of the observation point from the same formulas.

A modification of the above-considered elementary figure for

determination of AES position is the variant where the direction

is measured from one of the observation points (il) and the dis-

tance to the same position of the AES (k) is measured from the

other point (i2) (Figure 21).

z k

Figure 20.

k

. iAN

Figure 21.

kP k 2 ,

0 0

o Ij

Figure 22.

1 - known position
of AES.
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In this case, to calculate the coordinates of the AES, we

may compile the following system of equations:

k--xi, - ,ilk milk = O,
Yk Yi,+Pi,+piik ==7, (18.2)
z k - Zi, --- Piknik = 0,

(XI -Xi,)2 +r (yk - Y) 2 
-j- (zk-- p2

The unknown distance Pilk is determined from solution of

this system of equations, along with the coordinates of the AES

position. If the direction toward one unknown position of the

AES and the distance to another is measured from the observation

point being determined, the elementary figure (Figure 22) permits

calculation of the position of the observation point by linear-

angular intersection by resolving the system of equations similar

to the system of (18.2), where the subscripts il, i2 and k should

be replaced, respectively, by kl, k2 and J.

Finally, if the length and direction of the chord connecting

two ground points i and J are calculated, and the position of

one (i) is known, the coordinates of point J are calculated from

the formulas of linear-angular polar intersection:

Xi = Xt 4 Di cos )ii cos Ai,

Y/= Yj -- Di cos (ii sin Ai, (18.3)
Z = Zj d- Dj1 sill il.

Linear Intersection in Space /58

Let us consider the case of determining the position of an

AES, when the directions from the observation points to the AES

are not measured, but three distances to the position of the AES

are measured (Figure 23). Then, obviously, the position of the
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Figure 23. Figure 24. Figure 25.

AES is determined by linear intersection and to calculate the

coordinates of the AES we will have a system of three quadratic

equations

(Xk- Xi,)2 - (yk- Yi,) 2 +2 (Zk-Zi,)2 = pi,8.,
-Z , (18.4)

(Xk Xi.)2 r(- i,)2 + (ZJ2ilh = p3/

A completely similar figure may be used to obtain the coor-

dinates of the observation point, if the distances to the three

known positions of the AES are measured from it.

Figures for Determining the Position of AES from Directions

and the Differences in Distances

When combining the directions measured from the observation

points with the differences in distances to the two AES positions,

the elementary figures should permit simultaneous calculation of

the coordinates of both unknown positions of the AES.

Two types of such elementary figures containing two each

bearings toward the AES positions and two differences in dis-

tances from two observation points to the AES positions are

essentially possible, differing by the fact that in the first

case (Figure 24) the directions are measured from each of two
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observation points to one of the AES positions, and in the second

case (Figure 25), the directions are measured only from one
observation point to both AES positions.

The coordinates of the AES positions in the first figure

determine both the coordinates of the ends of vectors Pilk and

Pi2k2 from Formulas (18.1). In this case, the unknown values of

the lengths of vectors Pilk1 and Pi k are determined from the

solution of two quadratic equations, compiled on the basis of the

cosine law

(P22 -- Ap2)
2= P~ i- Di --D -pD ,i, (Lilll-l1[ iiM n ,--1-N i.Tn 1n),

(pi 4- AP,)2 --= P2+ Di,-- 2p22Dij,1(L£i -l 22 ( -iLAn 2 2 N82). (18. 5)

Similarly, in the second figure the coordinates of AES

positions are calculated from the same formulas of (18.1) for

vectors P ik and Pilk2 The unknown values of the lengths of /5

vectors pilkl and Piik 2' Jointly with the distance Pi2k2 - which

is unknown but unnecessary for solution of the problem - are

calculated from the same equations of (18.5) with consideration

of Pilk 2 = Pik + APi.

Cases are possible when photographic observations are com-

bined with the differences in distances, measured from the obser-
vation points, to two AES positions, of which only one is an

unknown (the other is calculated, for example, with the aid of

synchronous photographic observations alone).

Such combinations of measurements make it possible to con-
sider the elementary figures for determining on position of the
AES, which should be established by three measured values. Three

types of such elementary figures are possible:
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Figure 26. Figure 27. Figure 28.

- the direction to one AES position is measured from one

observation point and the difference in distances to this and

still another unknown position of the AES - from another obser-

vation point (Figure 26). The problem is solved similarly, if

the direction and difference in distances are measured from a

single observation point (Figure 27);

- the differences in distances to two AES positions are

measured from three observation points, one of which is unknown

(Figure 28).

Let us consider the figure presented in Figure 26. The

coordinates of the Ith position of the AES may be obtained from

Formulas (18.1), if distance Pit is calculated. Let us consider

triangles iJZ and ikl to calculate this distance. The distance

Pki' PiJ and PkJ may be calculated by the unknown coordinates of

the kth position of the AES and points i and J, and we find dis-

tance PJl by using the measured difference in distances and dis-

tance Pkj' We must now find distance Piz' For this, we apply

the cosine law to triangle iJl. The cosine of angle Zij (*) may

be calculated, because the direction cosines of bearing il are

known (from measured angles y and 6), and direction cosines of
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bearing ij are calculated from the coordinates. Solving the

quadratic equation and discarding the redundant solution, we will

have
P, - Pq COS 4 + Op cosO ¶ -- pj (p, - Ap)~;

COS ) = Ijill +- mnjiml + tntjin. ( 18 . 6 )

In the case when the difference in distances and bearing are /60

measured from a single observation point (see Figure 27), calcu-

lation of distance piz is simplified

Pit Pk + Ap.

In the case when the difference in distances to two positions

of the AES are measured from three observation points (see Figure

29), to calculate the coordinates of the point we may compile a

system of three quadratic equations of the type

(l/('k i ' Y) 2 +- (zk-- Z,) + iAp,) (18.7)
-(Xz -Xt,)2+ (y-- Y,): +(zl--ZJ)2.

Similar equations may be written for observations from

observation points i2 and i3.

Figures for Determining the Position of the Observation

Point from the Bearings and Differences in Distances

If we consider that the AES positions are known, combining

the measured directions and differences in distances from the
observation point being determined to the known positions of the

AES produces two types of elementary figures.
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In the first case, the difference in distances to two AES

positions and the bearing toward the third position are obtained

from the observation point being determined (Figure 29). In the

second case, the bearing is measured to one of two AES positions,

the difference in distances to which has been calculated (Figure

30).

The position of the observation point is calculated from

the first elementary figure by Formulas (18.1). To find distance

Pik' two quadratic equations should be solved which are derived

from the solution of triangles ikl and ikJ from the cosine

formula. In this case, the distance piz is calculated simultan-

eously with distance Pik' Distances Pkl and PkJ are calculated

from the known coordinates. The cosines of angles ikZ and ikJ

are found in the product of the direction cosines of the bearings

of their generatrices. For bearing ik, the direction cosines

Iki' mki and nki are found from measured angles Yik and 6ik'

taking the fact into account that 1ki = ' ik' mki = 'mik and

nki = -nik.

The direction cosines are calculated from the coordinates

for bearings kZ and kJ. The distance Pij = PiZ + APi, where APi

is the measured difference in distances. We have:
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2 2 p2,PNi -A p- 2,Pikpk (.ki l ki -+ mkinak i + nkinki) -' (Pil 4- Ap),

pt P ki I -F ptj 2P~kPk I ( -1 kf + inkknk1 - -kih l-) (18.8)

In the second elementary figure, the coordinates of the

observation point are also calculated from Formulas (18.1), but

distance 0ik is calculated by the formula

(1k , (18.9)Plk= 2 !ApPkPl (lktlkt +- kinkl-rlkink)] (1 .9

Let us now consider a case when only the differences in

distances are obiserved from the observation point. Then three

distances should be measured in the elementary figure - between

the two pairs of AES positions (Figure 31). To find the coor-

dinates of the point in this figure, it is easy to compile a

system of three equations

Pq -= (Pik + APj)2,
Pl = (pim-r- A,02),

P = (Pip - AP3)2

or in coordinate form

(X,-X )2+ (Yi-- ui)2 + (Zt- zi? = (I+-- xk) -2 + (Y- k)2 + (Zi-zDk)+

+ 2 Ap~ V ( -v - (Y] -Y- k)2 -(Zi - Zk) + Ap,

(X - X ) 2- (Y_ y.)2 ,- (Z_ - Zt=(x' -,)2 -+ (Yi -- - (Z, - ) +

+ 2 yp. v (x,-X,,, +2 (Y, - u,,)) + (z 2 -i ,,)~ + -X1o.

·(Xa ix,-O)+ 2 N + (i- ,? + (-z X-x) 2 - (Z - y) 2 +-- (Z - z?)2 -L
+2aali,- :,?+0,- u, z- .. ~

where Ap1, AP2 and Ap3 are the measured differences in distances.

A case is possible when points k and Z and m and n will

coincide; the solution of the problem does not change in this

case.
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t m In conclusion, let us consider
O O

k an elementary figure which permits

0 the coordinates of the observation
\ P

I / point to be calculated from synch-
x I /
\ | ronous photographic observations,

I / combined with the measured differ-

ence in distances to two AES posi-

tions, for one initial observation

Figure 31. point (see Figure 16). This fig-

ure permits both the direction and

length of the observation point-observation point vector to be

obtained immediately, i.e., in the final analysis, it reduces to

the case of linear-angular polar intersection mentioned above.

Earlier we obtained an expression to calculate the length of this

vector from a similar figure (16.12). However, it is necessary

in this figure that the positions of the AES form different

synchronization planes, whose intersection permits simultaneous /62

calculation of the length and direction of the chord, and at the

same time - the position of the observation point.

It is easy to show that in this case we proceed without cal-

culation of the coordinates of AES positions. Actually, to cal-

culate the coordinates of the AES position we can compile four

sets of three equations (18.1) from bearings ik1, ik2, Jkl, and

jk2. In these 12 equations there will be 13 unknowns - the

coordinates XklYlZcoordinates xk ' Zk Xk Yk 2 3 Zk2 xj, yJ and z and four

distances Pik,' Pik2 ' PJk1 and pJk2 The 13th equation is

obtained with the aid of the measured difference in distances

AP-Pik-, Pkt,.

Eliminating the coordinates of AES positions and one of the

distances from these 13 equations by simple algebraic transfor-

mations, we obtain the following system of six linear algebraic
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equations to calculate the coordinates of observation point J and

three distances

- -P PikTl% - Pik2 lik, + xi - APik2 = ,

--Y - Piklm'ik2 -- Pjk2  jik + yi - Apnik2 O,

-7 -j' Pik-l-ik2 Pjk2 njk2 -1- zi - Apnik2  0,

.- Xi- PkiklI - Pjklikl +xi=0, (18.11)

Y1pi -l- P I~/u- P* k ~jk - Yi* 0,

Z. + PkikLkl - P/k1n/k x _- zi - 0.

Selection of Figures to Construct Space Triangulation

We have considered the simplest elementary figures which
permit calculation of the position of the AES or the observation

point, i.e., all three unknown coordinates.

Moreover, it was mentioned earlier that the figures for cal-

culating the AES position are intermediate from the point of view

of calculating the position of the observation point, because in

themselves the AES positions do not interest us. Moreover, the

figures for calculating the position of the observation points

may be formed from synchronous observations of AES positions,

carried out over a long period of time.

More complex figures than those which we have considered are

formed in the process of real observations of AES positions from

different observation points. In this case, the number and com-
position of measured values in these figures may permit immediate

calculation of both the AES position as intermediate sighting
targets and the position of the point being calculated, such as,

for example, in Figure 16.
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In some figures, combination of measurements permits (if the

position of the observation points is assumed known) calculation

of the position of the AES alone (see Figure 24) or even not to

obtain this (Figure 32).

AI I .I-\
I //\

O '/
Figure 32. Figure 33.

However, other figures may also arise which contain AES /63

positions and those of a calculated observation point, in which

the measured values are greater than necessary for calculation

of the AES position, but inadequate for simultaneous calculation

of the coordinates of the observation point being determined.

Thus, for example, in each of two figures, one of which is shown

in Figure 33 by the dashed line, and the other - by the solid

lines, there are redundant measurements for determination of AES

positions, if the position of both observation points i and J are

assumed to be known. If observation point J is assumed to be

calculated, none of the figures will determine either the position

of the AES nor that of this observation point. Only by consider-

ing both figures Jointly may the positions of the AES and of ob-

servation point J be calculated.

It is clear from the foregoing that figures which also con-

tain redundant information in addition to the measurements deter-

mining the AES positions, are required to construct space trian-

gulation for purposes of determining the position of observation

points. Therefore, of the entire aggregate of real groups of AES

95



observations related among themselves in time, it is necessary

to select those figures which contain not less than 3s + 1

measurements, where s is the number of AES positions in the fig-

ure, to include space triangulation in a mathematical treatment.

19. General Principles and Characteristics of Constructing

Space Triangulation

Space triangulation is a gemoetric construction, based, as

is evident from the figures forming it, on the possibility of

determining the mutual position of observation points by observa-.

tions from them of simultaneous positions of AES. Thus, a satel-

lite in space triangulation is used as the intermediate high-

altitude sighting target.

The figures considered in Section 17 determine three

principles of construction of space triangulation from photo-

graphic observations.

Sequential solutions of pairs of groups of equations (18.1),

obtained during synchronous observation of not less than two AES

positions from three observation points - two initial and one /64

calculated (Figure 34) - permits the coordinates of the obser-

vation points to be calculated by the method of angular inter-

sections in space. This is the first principal method of space

triangulation construction.

Elimination of the unknown coordinates of the AES position

from two pairs of equations (18.1), obtained as a result of
synchronous observation of one satellite position from two obser-

vation points, leads to the equation of the synchronization

plane (16.2').
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Figure 34. Figure 35.

Joint solution of the equations of not less than three

synchronization planes, compiled for not less than two initial

and one calculated observation point, permits the position of

the latter to be obtained. This principle of construction (see

Figure 18) is called the method of planes.

Solution of two Equations (16.2') for each chord between the

initial and calculated observation points determines the direc-

tion of each of the chords, and the position of the calculated

observation point is found at their intersection (Figure 35).

This principle of space triangulation construction has been

called the method of chords (closing directions).

Depending on the purposes of creating space triangulation,

three types of construction may be distinguished:
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1. Separate figures used to determine the position of

single points, for example, to tie in a local geodetic system

(insular) to a unified geodetic net (mainland), as well as those /65

which are integral parts of more complex types of constructions.

2. Series used to transmit coordinate systems for a con-

siderable distance, or to combine very remote local systems into

a unified system with minimum expenditures of labor.

3. Dense nets, used for propagation of a unified coordin-

ate system over a vast territory, or to create a network of

observation points of specific density.

These constructions differ in the distribution and number

of AES observation points. However, they may all be regarded as

a combination of the individual figures forming the space tri-

angulation.

When considering all the problems of construcstion, adjust-

ment, and analysis of the accuracy of space triangulation, two of

its characteristic features should be taken into account. First,

all measurements in space triangulation are carried out only'from

ground points and no measurements are carried out from the satel-

lite. The absence of direct observations from the satellite and

between ground triangulation points leads to the fact that all

measurements in the space triangulation network, unlike ordinary

triangulation, are unilateral.

Secondly, space triangulation is distinguished by less /66

reliable determination of individual AES positions than of

observation points. This is quite understandable, because each

instantaneous position of the AES may be observed only from a

specific number of observation points and only at one time.
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A comparatively small number of synchronous observations of

the instantaneous position of the AES creates a small number of

redundant measurements to determine a given position. And a

large number of redundant measurements is accumulated to deter-

mine the positions of a comparatively small number of observation

points compared to the number of AES positions in a triangulation

network constructed over a considerable period of observation

time.

As in ordinary triangulation, the problem arises of adjusting
measurements in space geodetic networks due to the presence of a

considerably larger number of observations than is required for

calculating the coordinate points. Adjustment is accomplished

by the least squares method. In this case, a set of measured

values obtained at the points within a specific period of obser-

vations is included in the processing.

The three possible principles of construction of space

triangulation which we have outlined, as well as their character-

istics, have revealed the different methods of applying the least

squares method to adjustment of space triangulation, which will

be elucidated in the following chapter.
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CHAPTER 5

ADJUSTMENT OF SPACE TRIANGULATION

20. Types of Conditions Arising in Space Triangulation Networks /67

When adjusting space triangulation, it is necessary to cope

with a number of characteristics which are apparently inherent

only to a given type of geodetic network. We recall that the

directions between the observation points of space triangulation

are determined independently of each other in a unified stellar

coordinate system. Therefore, conditions similar to those of

sums and azimuths (directional angles) may not arise in such a

network. In other words, not one of those conditions which are

combined under the general name of angular conditions in an or-

dinary geodetic network occur in space triangulation.

Polar, base and coordinate conditions are completely retained

in space triangulation. But besides them, specific geometric

conditions appear in space geodetic networks which have no

analogs in plane networks - the conditions of coplanarity of

three vectors, plane bundles, and plane sheafs.

A specific type of conditions arising in the figures of

space triangulation is considered below.

Conditions of the Coplanarity of Three Vectors

In more general form, the condition of coplanarity of three

topocentric vectors AR1, AR2 and AR3 will be
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(20.1)
AR 1 \R 2 A'\R3 =O

or

[r,--r.2] [;,-rs] [r.--rs]=° . . . . 2)d O,(20..2)

where ri is the value of the radius vectors.

After normalization, we obtain

rIrh-j0 (20.3)F Ir,-2. II ri-rd IrF=-F I=0r rlrz T f r-r3 Fl- 31 ~ °( 2 0.*3 )

or

a,. 2'a 1,. 3 .a3 = (20.4)

where /68

rtj --1- r i I.

Equation (20.4) is the condition of coplanarity of three

free vectors. In coordinate form, it has the form

F= l M I 71 - (20.5)F=1. s ~. n,. 3 0
12. 3 m2. 3 712. 3

This condition is the principal one in space triangulation

and arises as a result of the synchronism of observation of a

single satellite position from two observation points (synchroni-

zation planes) or arrangement of three vectors connecting the

observation points in a single plane ("the plane of three

observation points").



Conditions of a Bundle of Planes

The direction of the lines connecting two ground points is
clearly determined as the result of intersection of two planes.
The condition of the bundle of planes exresses the requirement

that all synchronization planes intersect for two observation

points on a single chord. Each new plane, added to the first
two, will be redundant and, consequently, will lead to a single

condition.

Let three planes be defined by their normal vectors Nl(AlBIC 1),

N2(A 2B2C2) and N3(A3BsC3). Let us compose a mixed product of

these vectors

V=N 1N2 3  (20.6)

The mixed product is numerically equal to the volume of a
parallelipiped, constructed on vectors NR, N2 and N3. However,

if the planes belong to a single bundle, the parallelipiped

degenerates into a line and, consequently, V = 0. Turning to
the coordinate form of a mixed product, we obtain the conditional
equation of intersection of three planes on a single line

A1 B1 C1

Y= A2 B2 C2 =0, (20.7)
A3 B3 C3

Condition of the Sheaf of Planes

Intersection of three planes in space clearly determines a
point and each additional plane leads to a single condition,

expressing a requirement for intersection of four planes at a
single point.
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We know that four planes pass through a single point when

the fourth-order determinant, compiled from the coefficients and /69

free terms of planar equations, is equal to zero, i.e.,

Al B1 C1 D1

A 2 1 2 C 2 D2 (20.8)
A3 B3 C6 D 3  o (20.8)
A4 B1 C4 D4

Base and Polar Conditions

The conditional base equation arises in the case when two or

more initial or measured sides are contained in a space triangu-

lation network provided that there is a direct relationship

between these sides through a chain of three-dimensional triangles.

As an example, let us write the base equation for the figure

shown in Figure 36. Solving triangles ilki2 and i2kJ sequentially,

it is easy to obtain an expression completely

k analogous to the conditional base equation

X . for plane figures

F, el vsinl 4D -- 0 (20.9)

{s / in which $ are the angles formed by topocentric
~4; --1 c2 directions.

Figure 36.
1 - measured base A unique feature of the base equation is

of chord. the condition which arises when the differ-

ences from the observation points to the AES

positions are measured along with simultaneous photographic

observations.
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The polar condition occurs in space triangulation figures in

the case when there are closed chains of triangles, which begin

and end on the same side. Three-dimensional polar conditional

equations are compiled in a similar manner as is done in geodetic

networks on a plane.

The form of the conditional polar equation formally precisely

gives the expression obtained for the conditional base equation.

Coordinate Conditions

Coordinate conditions occur in the case when there are

isolated initial points or systems of them in the space triangu-

lation network. A space triangulation figure is shown in Figure

37, in which the spherical coordinates of all lines connecting

the apexes of the given figure are known, where A and !B are the

initial points, P is the calculated point and ki is the AES

positions.

*3 The coordinate condition in

vector form for the figure may be

i \written

P1 + P2 p3 p4 --Ab. (20.10)

f1 SiThis condition means that the /70

coordinates calculated from point

Figure 37. A along the course line Ak2PksB,Figure 37.
precisely coincides with the

coordinates of initial point B. For the coordinate increments

the following equations must be satisfied.
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X8 -x, AX-X :: 1 kPik'
I

t
n-!

YB- YA=AY:A Y 11m'ikPik,
l

n-i (20.11)
Zis- ZA =AZ =- ~ nilPik,

where lsis the number of the observation point (i = 1, 2, ... , n)

and k is the number of the AES position (k = 1, 2, ... , n - 1),

from which the conditional equations for the coordinates are

easily obtained

n-1

yx ' iPi-AXn. I--O'

% = 7nikPik - AY,,. IO,2 7 (20.12)

z =z. .~ likfi --, AZ,, o.

Selection of Conditions

Most conditions arising in ordinary geodetic networks have

the property of equivalency or interchangeability, which leads

to the selection of the simpler in form or that containing the

least number of unknowns compared to other conditions, from

several relations linking any group of measured values.

The conditions arising in a space triangulation network also

have the properties of equivalency.

The condition of a sheaf of planes, which expresses the

requirement that the synchronization planes intersect at the

points. of AES observations, is more universal from the geometric

point of view. Actually, synchronization planes must pass through

the initial points (the three terms of the equations of these

planes are calculated under this requirement). Moreover, the

planesconstructed with the aid of measurements from some calcu-

lated point, after adjustment, form their own sheaf with the
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center at this point. Thus, after the conditions of sheaves of

the planes in a given network have been satisfied, the polar and

coordinate conditions should be automatically satisfied. In /71

other words, the condition of the sheaf of planes is equivalent

to any other condition, with the exception of the condition of

base for directly measured sides.

The conditions of the sheaf of planes and the bundle of

planes in turn are equivalent to definition of four and three

equations of synchronization planes, respectively ("the planes

of three points"). Therefore, any conditions of space triangu-

lation, besides base conditions, may be described by the appro-

priate number of planar equations.

However, the planar condition requires definition of the

coordinates of two points through which this plane passes. Con-

sequently, for conditional planar equations, passing through

calculated observation points, it is necessary that the coordin-

ates of the latter be expressed by all the measured values, by

means of which these coordinates are calculated, beginning from

the initial points. This would lead to an extremely cumbersome

and irregular form for each planar condition. In order to use

single type and simpler planar conditions during adjustment,

the coordinates of the calculated points may be regarded as

additional unknowns (parameters).

The preliminary estimate of accuracy is another thing.

The values of the free terms of conditional planar equations

with additional unknowns depend both on measurement errors and

on definition of the preliminary values of the unknowns. It

is clear that the free terms of these equations may not be used

to analyze the accuracy of the measurement results in terms of
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the residuals discrepancies of the geometric conditions. Condi-

tional equations without additional unknowns must be used to

analyze accuracy.

21. Adjustment of Space Triangulation by the Parametric Method

(the Method of Direct Measurements)

When adjusting an entire set of measured values of triangu-

lation by the parametric method for each measured value, connec-

ting the position of the observation point to that of the AES, a

correction equation is compiled in which correction for the

measured value in explicit form is expressed by corrections of

unknown coordinates (parameters).

The Correction Equation for Angles y and 6

The functional relationship of angle y to the geocentric

coordinates is defined by Equation (15.2).

After it has been reduced to linear form, we will have

yxk; - -rcig -k '-i - dxk + dyk+ (21.1)

+ dX,+ "Y dY).
a .4i O A.

Let us introduce the notations /72

dxk =k;

dyk = 1lk;

dXi=- ti;

dy i  =1i;

sik-1/(.xa -- X t) (Y - - Ye) 2 = Pik COS 6ik,

v 1 Xk-XI -
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It is assumed in Formulas (21.1): p is the distance from

point i to the AES position k; s is the projection of this dis-

tance on the coordinate plane XOY (the plane of the equator);

X0, Y0, xo, and Yo are the preliminary values of the coordinates,

and y' and 6' are the measured values.

Let us find the partial derivatives contained in Expression

(21.1),

8y sin ?' sin 7'
zk so cos6' -- a,

y9 cos¥ Cos
Y SO po cos 2 2 b,

-sina, sin (21.2)
OX1  pcso'Yo cos 8' + +a,
d y ' cos 1" cos ¥'
9Yt so pTcos - q b.

Taking into account Formulas (21.2), Expression (21.1)

acquires the form

v,,k = ark + b1lk- ari -- bli +1k; ( 21.3)( 21.3 )
Weight P.k

The coefficients of the correction equations are the func-

tions of spherical coordinates y and 6. In some cases, it is

feasible to represent them in the form of functions of direction

cosines of direction ik.

Taking into account the known relations (16.1)

= cos 6 cos?,

m = cos 6 sin ¥,

n =sin 6,
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it is easy to obtain

msiny~ ¥ qT;

sinS6 ~n, sinon(21.4)

C '~' J/j 2+_;2'cos ¥,= .- -_,_

cos o= c 1-n2.

We substitute (21.4) and Equation (21.3) with consideration /73

of (21.2), and then we obtain the correction equation in the form

sf i 2 -1-2- (mk M lqk r- t l (21.5)

Angle 6 as a function of rectangular coordinates is described

by Equation (15.2). Reducing it to linear form, we obtain

0_86 8. 6 8, 86

l_60
Vak do--k k + 1,- do k- aslk k zk k*( 21.6 )

.+- aF t1i + 16io 4

where ~ = dz,

1=arctg ( Zk -Zi

Xj)2 Y. )2

We find the partial derivatives
8a6 -cos V' sirl 6'--- = ~--_ -j- C;

Po

a86 cos ' sin6'
- -c;8Xi , Po

08 -sin y' sin 6' d
P-ak Po

a8 SillV Sil (21.7)= ' -= -d; (2-7
dYi Po

a8 cos 6'
= -- -- e;

8zk Po

a8s cos6'
Oz--V- = O -- e;Po
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With consideration of (21.7), Expression (21.6) is written

Vk =-Ca 1-dili-etl+ Ck+&d rek +ek+-l Ak; Weight Prk. (21.8)

If the partial derivatives of (21.7) are expressed by the

direction cosines of a given straight line in space, using
Formulas (21.4) for this, Equation (21.8) acquires the form

ft

V8ok p /_ (- i1t-- fl + l k + milk) - (21.9)
P (21.9)

p (ha -k)+ 1 .1

The weights of the measured values for their correction

equations are calculated from the relations of the squares of the

mean square errors of the measured values. Taking the fact into

account that m6 = my cos 6 holds as a result of astrometrical

processing, the weights of the correcting equations of angular /74
measurements may be written in the form

C

Pa=n -; (21.10)
'C

P1: me sec2t6'

If the observations are made by cameras of the same type,
they may be considered balanced, and assuming .p2 = 1, consequently,

C = m2, we will have p. = cos 2 6.

The correction equation for y is not compiled if the time
of observation of a passive AES is not recorded.
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If the errors of recording time (ms) are known, the weights

of the correction equations will be calculated as

C
Pv = C2 &r+ ( +k 2) c - and

c (21.11)
P6 mg±(k')2m2

8S

where k and k' are the components of the angular topocentric

speed of motion of the AES along axes a and 6.

Angles y and 6 should be regarded as correlated due to

their derivation from astometric processing of the same photo-

graph and their reference to a single moment. However, the

results of adjustment hardly change if this correlation is

disregarded.

Cases are possible when the direction of the chord between

two points, obtained, for example, from ordinary triangulation,

is used as the measured element of space triangulation.

In these cases, for angles A and 1, which determine the

direction of the chord, we may compile correction equations

exactly like those for angles y and 6

VAIj ....at-- bl + aL i + b i - l+ ,1

(21.12)
Va~i =.-- C- C didi - e 1i- C+1 + dq i -+ e qi Jq-i

in which the coefficients and free terms are calculated from

Formulas (21.1) and (21.2) replacing yik' 6ik and Pik and theik ik Pik

index k, respectively, by Aij, iiJ' Dij and J.

The direction of the chord may also be the initial direction.

In this case, the corresponding number of unknowns may be excluded

from adjustment. However, to retain uniformity in adjustment,
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it is feasible to compile correction equations for initial direc-

tions as well, giving to them such a large weight that they will

almost be equal to zero as a result of the correction adjustment.

The Correction Equation for Distance

Reducing Equation (15.3) for measured distance to linear

form, we have

V,~~~ ikVP Okp k-v~ih~T~r7 kF~y7 kF ' axi8

Al- j (21.13)
£- aj l i- I -l- ik ; ]i '(

where

Pi - ( X), (X k Y[) J (Y- k Zi)(o-p.

The partial derivatives of function p have a very simple

form

ap Zk -- X k;
Ozk Pik li;

a__L__ Xk--Xi =. ~
O'Xi pkahi Pik

Op Yk - in;P -Ok £ - 171ik¢;
819k Pik

O _ Yk -- Y i (21.14)
a'i NI'ik

ap z ~-- Z th;iOzk PPik

Op k_ ,_-Zi_
aZi Pik -- -1ih'

Having substituted (21.14) into Expression (21.13"), we

obtain

V, ih -' l+ 't- miknik -,-n +lA -

- I-7ihii- 1ihk r l (21.15)

CP2  , r . p2 -

Pe 170- or at -:ml~ we have p= .,
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If the relative error of distance measurement is

m--=Mp, then Pp=- -

To establish the scale of space triangulation, it may include

the bases of the "space bases" between the observation points,

obtained from a complex of highly accurate linear and angular

measurements, made on the Earth's surface. The correction equa-

tions for these bases are included in adjustment of space trian-

gulation by the parametric method with a weight corresponding

to their accuracy. In the case when the base is taken as the

initial value, they are formulated in the same manner as those

with the initial direction of the chord.

The correction equation for the measured base corresponds

completely to Expression (21.15). However, the unknown values

in it, instead of corrections for the position of the AES, will

be corrections for the coordinates of the observation point, and

the coefficients with unknowns will be the direction cosines of

the chord, connecting the ends of the base.

The Polish geodesist Y. A. Zelinskiy [22] proposed using

the distances between AES positions, located on a single orbital

revolution, as measured values to increase the rigidity of space

triangulation and to establish its scale. These AES positions

were observed simultaneously from the space triangulation points

by the photographic method. The value of the distances (the

celestial chords between the AES positions) should be determined

by the orbital parameters obtained independently of these obser-

vations, on the condition of their small differential variation.
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The correlation equation for measured bases of celestial

chords obtained will have the form (21.15). However, the unknowns

will be corrections for the coordinates of two AES positions, and

coefficients Z, m, and n will be the direction cosines of the

celestial chord.

The correction equation for the measured distance as the

base between points in the adjustment of space triangulation by

the parametric method may also be used in a single aspect. We

know that the heights of points above the reference ellipsoid

are known with a considerably higher accuracy than the geodetic

coordinates of points on any surface of this ellipsoid. Conse-

quently, the preliminary values of the coordinates of the calcu-

lated points of space triangulation will contain one component

which is more accurate than the two others, and, it is desirable

that the corrections of it from the adjustment be less. During

adjustment in geocentric coordinates, it is simpler to do this

by using the following procedure.

The length of the geocentric radius vector of the point

being determined is calculated from its preliminary coordinates.

The center of the Earth (coordinates X = 0, Y = 0, Z = O)

is taken as the additional initial point, and the length of the

radius vector - as the "measured base" between the center of

the Earth and the point being determined. When establishing the

measurement weight, the accuracy of determining the altitude of

the point above sea level and the accuracy of the altitude of

the geoid above the ellipsoid at this point are taken into

account.

Correction Equation (2115) in this case has the form

(21.16)
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where

or

6 i-= a1 jn -- biui -f- c;1T 1-J IR

where

a=1, = biP'-T 1-K RT- I + a
2  '

1-T i  RtT3
ci = .--- + "

c * ./ '-[ a
2 (l- e

2
)'

T a Ji--e2

V (-R -) ( x- + 9)- ) -(-zH '

,,{{ R° -- (1l-T° o) -- (Ht+h).

Correction Equation for Measured Difference in Distances
m

To compile the correction equation for the difference in

distances, it is necessary to reduce Expression (15.14) to

linear form
Ap= Ptk--Pt,

where k and Z are the AES positions, and i is the observation

point. As a result, we will have

OAp OAp Ap OAp 0Ap ,
ax oi ~ , oli az, o + lk

'+ aAl o a aAO ,I+l -I . A'z,

(21.17)

where

lP =- (I (xk -X 1 )2 )- (Yk --Y)' + ( Zk Z) -

- (X-i) 2- X +-- (Y -- Y, +(zt- Z)o Ap'.
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1Ri - 1/Xag -. Y'o+Zt- 2(No+ H _th) V/1 --(2e2 -e 4sin U



The values of the partial derivatives will be

aoo:_ lik L i =/i,
OX1

OAp

oil ((21.18)
DAp _ OAo

aAp OAp
-ik l -M ilk

(Yk

OAp aAn
zk -- n ie l. 

-  
n

i l l

Substituting (21.18) into (21.17), we obtain the final form

of the correction equation for the difference in distances

Vpa -f -- gi -li + i -k. lukE. -i- n ikllk -- nik k lil

(21.19)

with the weight PA?= X2, or at C-mg Pa,-= e

Consideration of the Effect of Systematic Errors

When it is assumed that there are systematic errors of

recording time at one or several points of space triangulation

(including initial points), their effect may appear and be elim-

inated in the adjustment process. This problem may arise in

observation of passive AES, where the synchronous moment must be

known with high accuracy.

The error at of the time recording affects the accuracy /78
ti

of calculating the topocentric equatorial coordinates of an AES,

and it may be calculated from formulas

Ay ' - kae, i; A6 -k1 k'cri



where k and k', as in (21.11), are the rates of change of the

equatorial topocentric coordinates.

If the errors of recording time a are included as additional
ti

unknowns in adjustment of space triangulation, the correction

equations in adjustment by the parametric method, taking into

account errors of recorded time, will have the form

vvYik =- -abi- bi + ak -F bllk + Zkci + vik -

Vlk =-C -dli-e bk - dk ek 4 k ti 16ik (21.20)

The unknown at will be contained in all error equations,
i

compiled for all AES positions observed from point i.

Inclusion of additional unknowns at increases the number of

normal equations by the number of these unknowns.

The unknown error aP or aAp may also be found in the

presence of systematic constant errors in measurements of p or Ap.

The Order of Adjustment

The main process preceding the calculations in the case of

adjustment by the parametric method is establishment of the pre-

liminary values of the parameters - the coordinates of all AES

positions and observation points.

The preliminary values of coordinates are calculated sequen-

tially, beginning from initial points, from measured values of

y and 6 (and if necessary, of both p and Ap) from the formulas
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of Sections 17 and 18. In some cases, when the AES orbit is

predicted with sufficient accuracy, the preliminary coordinates

of the AES may also be calculated on the basis of this prediction.

In case of rough preliminary values of coordinates, adjust-

ment of triangulation may be accomplished by approximations so

that the equalized values of the coordinates of first approxi-

mation are used for new calculations of the coefficients of the

correction equations and their free terms.

The number of correction equations is naturally equal to the

number of measurements. Solution of these equations under the

condition [pvv] = min leads to a system of normal equations for

correction of coordinates, whose order is equal to 3(s + P), where

s is the number of AES positions observed and P is the number of

observation points to be determined.

Since the AES positions are not related to each other, but

are related only to the observation points,* s is usually con-

siderably greater than P.

Having numbered the unknowns for correction of the coordin-

ates of AES positions first in order, and those for correction

of the coordinates for the points to be determined as the last,

we obtain a system of normal equations, whose form is shown

schematically in Figure 38.

It is easy to see that the system decomposes into groups of

partially independent equations, and therefore, it is ideal for

solution by the Pranis-Pranevich method [42]. Solution of such

a system of even very high order does not present technical diffi-

culties when using modern computer technology.

*Only measured differences in distances or "measured" lengths
of celestial chords may connect adjacent AES positions.
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This method of equalization is valid for space triangulation

of any construction.

22. Adjustment of Space Triangulation by the Conditional

Method with Additional Unknowns

Implementation of the conditional method in its canonical

form in the adjustment of angles y and 6 entails considerable

difficulties. Introduction of additional unknowns simplifies

the compilation of conditional equations. The number of normal

equations in this case increases and becomes equal to N = r + 3P,

where r is the number of independent conditions occurring in a

given network, and P is the number of ground points to be

determined.
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Since the coordinates of the AES position are intermediate

data from the point of view of construction and adjustment of

space triangulation, it is feasible to select coordinates of

ground points only as additional unknowns. This selection of

additional unknowns leads to the fact that three types of condi-

tional equations will be mainly used in mathematical processing:

the planar condition and the base conditions for measured distance

and for the difference in distances.*

The Conditional Equation of the Synchronization Plane

After reduction to a linear form with respect to corrections

for measured values and corrections for the coordinates of points,

the conditional equation of the synchronization plane (16.2')

Fk = AkAXf - BkAYIq + CkAZi = 0

is written

C1Vik - a26ik -- a3Vvj-k + a4 v6i--Ak (4 - t) + Bk (i-- (22.1)
+ Ck (i-- .) + TTk = 0,

where
X= OAX0 -T B'AY +-t ChAZO,

_1__ = -g 6i,. (AXur cos ¥ik q- AYq sin y/k) - AZgi cos (Yik - - Y/k),

a2 = -d) = sec2 6ik (AXi sin ¥jk -+ AY 1 cos ¥ik),
Kbk

OF
a3 = --- tg 1k (AX=i COS e k -TL AY11 sin ik) - AZj cos (V)ik,

t4 =ad = see °k (AxiSin SV~k -Ayi COS O(

Ac°jk (AX l A Vi) (22.2)
OF

Bk = OAFYi =tg9 5k cos¥k -- tg ajk COS ¥ik,

OF
Ck = - -sin (Yik - ik)

*A special type of condition occurs in the presence of meas-
ured directions or bases of chords - conditions of chord elements.
The uniqueness of these conditions is that they are related to
each other only by the unknowns of triangulation.
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If the measurement contains systematic errors in the deter-

mination of the time a, conditional Equation (22.1) will assume

the form
alVvlk- + a2vo61 a3v + -a4V-6i -Ajk--Bil,-C- + At, -

+ Bn, ,- Cue + (alk, - a2+ k) a, + (a=1 -+ a;4 k) a -1 - . (22. 3)(22.3 )

Such equations are compiled for all synchronization planes /81

passing through points for which corrections ai and aj are being

sought.

Conditional Equations for "Measured" Chord Elements

If the base of a chord connecting two ground points to be

determined in a space triangulation network is measured, the

base condition will occur in this network.

When using additional unknowns - corrections of the coor-

dinates for the chord ends - the conditional base equation assumes

the form of the correction equation for measured distance.

VI - L? (t - ,) - M (- , ) - Njj (-,) + WD = (22.4)

where

WD = 1/(AX ) + (A Yi) 2 - (AZ - j)2 - D.

In the case when the base of the chord is measured with a high

degree of accuracy (comparable to the accuracy of the initial

sides), correction of vD in Equation (22.4) is assumed equal to

zero. A similar situation arises in the presence of a "fixed"

direction of the chord in triangulation, determined by two angles

0 and A. In this case, two conditions occur in which the coor-

dinates of the chord ends coincide with angles A and $. When
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additional unknowns are introduced, these conditional equations

assume the form of correction equations for measured angles char-

acterizing the direction of chord A and chord A (21.12), and

differ from them only in the fact that corrections vA and v0 vanish.

Thus, the conditional equations are written

-at, -bill+ at, + &9i 4- Wtii =- O. 2

-0 (22.5)

where the expressions for the coefficients may be found in Formulas

(21.7).

The Conditional Base Equation for Measured Distance of the AES

In space triangulation constructed from data of simultaneous

photographic observations, the scale of which is defined by the

system of initial points or bases, the coordinates of all points

to be calculated may be obtained. Therefore, the measured dis-

tance from an observation point to the position of an AES, the

directions toward which have already been determined, is redundant.

The conditional equation with additional unknowns - the

coordinates of observation points from which the AES position

was observed - may be obtained in a manner similar to the con-

ditional base equation (20.9). From triangle ikJ (see Figure 15)

we will have

F PiksinPk
=D- 7[9 ; = O. (22.6)

After reducing conditional Equations (22.5) to linear. form, /82

we obtain
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a1v VIk d- a2ellk + a3vVik + at6ik + a5vpik + a (l - t) +

+ b (Ili-- qO) + c (.i - ~t)+J W = O, (27( 22.7).

where

al -CO aCOSiL - osk COS 8jk sin (¥jk- Yik),

2  _ -,,_ = [sin 6ik cos °jkos(_) - cos (2 sin 8ik),

OF k OF 0N = ctg Ik CSik OS ksin(¥k Stk)

+ctg [1/_ (AX/cMii_ AY11L1i),
Dsin pk

OF a ~OF O8i Ct P

:- = ... _ [sin °jk COS °tk COS (ik- ink)-

ctg 1 tg jk (22 8)
- COS ij k Sill 6/kl -D · "

a3 +OS kjk APk

X (AXtiL 1 ' AYiX-111i - t zti)

OF t
Dsin Pk P

Fo aD OF 1- L

a ~ t dli t9l> 8i

a=7 8D~ 013 OAYfq Oia'il l - i {
- ctgCOS j

+ Ds (in -+ MJ, cos F),
OF 813 N 1

+tg i -' j Ni cos)

Dlik

OF OD_ OF _ _2+

c - D aA~l ~ OiOZ-1 Nt -

i /Clj + mi - l4-nl-l) -== Ni 2 .9ctg PfI ,
q T-S --- ,T tn(I i k - N il COS Pii)'

pit~(22.5/2
. of,,. lf -i--',qj, "l,'h ', t.
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The conditional equation of measured distance may be obtained /83

in another form, by eliminating the coordinates of the AES posi-

tion from the basic equations of (18.1), after which three equa-

tions remain

AXij = Pik lif -- Pillik ,

A Yij = Plkmik -Pinrie ( 2 2p.n10 )AY1 1 ~P~k~iI 1P~k~~l~~(22.10)

AZ U =Plkn1 ik -- PikPjk

After both distances have been eliminated from these three equa-

tions, we obtain the conditional equation of the synchronization

plane.

Calculation of one of the distances, for example pjk (if

distance Pik is measured), from the first equation of (22.10)

Piklik-AXPi
Pik i1k (22.11)

and substitution of it into the second equation leads to the

conditional equation of measured distance in the form

F' (AXij- Piklik) mik -- (AYj - Pikm ik) k = 0 (22.12)

Reducing it to linear form, we will have a conditional equation

in the form of (22.7), where
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OF' -. i OF' ik COS ( ik)

dlik Ot ' Oill = Pik COS 6ik COS 6 jk cos (ik- Tik)
F 'iO a, .,' Onl ik

OF' Oli OF' Om.ijk
aa = 7l, jk -= + Pik cos °k COS °jk COS ('jk - TYk) -

k ay i k-)11 ij772jkt
. AXii I -}- A Yiffinik,

OF' aljk OF' drnik

c 4 Ol jkOin + , k i= tg 8ik [+5 YiijljO; -AX,&A-,k

+ Pl CO ik COS 6 jk sin (tJk

a 5  - k COS 6ik cos ik sin ('ik - Vik)' (22.14)
.... CO osik COS x ik si' (Tik - Yk),

OF'

b-OF'b== -A-- - li '

OF'

OAZ j0

W (AXi-- Pikl/h) 7?Z ;h--

-(A YtYI -pk-ipnli)tl,.

In the case when, besides the directions to the AES position, /84

both distances to this position Pik and Pjk are calculated from

two observation points, a conditional equation of the form (22.6)

or the form (22.12) may be compiled for each of the distances.

Moreover, one of these equations may be replaced by the condition

which expresses the cosine formula for a plane triangle. This

condition is obtained as a result of adding the squares of the

three basic equations of (18.1)

(p = Dj--pilk--pjh +- 2plkPk COS Pk. (2215)

Reduction of (22.15) to linear form yields the conditional

equat ionequation a1vLk C2Vlk -a3vvik -- a4vjk +

-L a(%v + ea~Ve -,-' a ( + - t) +

4( -i + Ctrk c(22.16)+ b 0)! = yq,) + C (ci- 4 -~w = o,
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where

a ok O PikPik COS 681k cos 6k sin (tIk ik),
8 qk OM

6
2= a = - PikPPk [sin ik COS aik Cos (Tik -V ik)-cos k sin 6k 1,

dq OpOYk PikPik Cik ik COS 6ik sin (jk- )

a4 = O 8 61 - PikPik [Sin ik COS Ik COS (ik- Ik)- COS 6Ik sin 6 1k

Oq)ae ap = Pik Cos Pk --- Pik.OA C(22..17)
am

a pOq) Pik COS Pk-Pik,aO =o' -Pik cs 3--Pk
a = 01q8pD cAX.ii
a-OD ODX

b- cpOD d A
8q, OD

b OD OAZY A YZi,Oqp O D _

[ = 2 .i -- Pil , +- Oil + 2pihp, (l-l|k + m + n, ni)]'  (22.. 18 )

Finally, for this same condition, the equations (22.10) may
be used directly as conditions

qI = AX 1 - (Pill k- Piklik) = 0,

T2 = A -(Plkm-k- Plkmik) ='0, ( 2 2.19)

p3 = AZIj- (Pknik -PIknjk) = 0.

After reducing them to linear form, we obtain /85
aevYMk cv, -2 a + vvTlk + Cq4Vaj, +

-F tLVP. -F at ovokV+ a, (i M -

+ bl. (.j -- Lq) + (- - W=
PiVylk jI- P2V~Ik + F'3VVik _1 p4Uajh t

(22.20),5VPk PVPJ 4v a2i (j-- )+i (22-.20)

+ b2 (j ]) -- C2 (r - tti) '- T' = 0,
elVyik + E2Vaik + E3Vyjk, - jk '+

+- e5VPik -F- 6ovPik 4- a3 (Gi -- ) +

+ b3 01i -1 2) + C3 (IV,6) '- O.
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where where al = Pik cos 68. sin ¥i.,

c2 = Pi, Siln 68 ' cos ¥ik,

a3  - Pik cos 6ik sin 'ik,

a4 = P -Pik sin jt, cos ¥ij,

a5 =.--COS 6k COS¥ik,

a6 COS °jk COS Tph,

al= , bx==0, el -. O,

P1 ' - Pik COS 6ik COS 'ti,

2-- P l sin 8S in ¥I,k

,B3 = Pk cos jk cos TiA,

4 -Pik sin 6jk sill .'/, (22-21)( 22.21 )
= - COS sik sin Ti'.,

0 =COS 6ik sin 'ik I

a2 =O, b2 =1, c2 -O=,
el =0,

e2  .Pik COS °ik,

F3 == O,

E4 Pik Cos ijk,

e 5 =- Sill jik,

ea = Sill 6ik,

a3 ==O, b3 =-O, c 3 -- ;

/86

IVC -A,- AX i - P' ' cos C'u,
±1 P;.' I ;,~Vh

1T z-- A11- ,°- p',h COS (S'l. sil]~l ",- (22 . 22 )
-t- Pj: Cos ' Sill..I.

qV~r- Pi"\ cs5p os¥k

I]:L .. sZ ii - - pPik Sll i ,--Pj sin 6;1,.

Conditional Equation of the Difference in Distances

Let us consider a space triangulation figure (see Figure 16),

in which photographic observation of two AES positions is accomp-

lished from two ground points, and, moreover, the difference in
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distances to these same AES positions is calculated from one of

the ground points. Two conditions of the synchronization plane

and one base condition for the measured difference in distances

occur in this figure, which has the form

F Api - DAX, q+ EAZ -= 0 (22.23)

(Another equation with functions of other coordinates may also

be obtained), where

COS ik, si 'jk COS 6ik sin yjf ,
D = --- "'I i 7~

Sill ('ik, - - ik,) sin (ik,-- Yk,) '

E = COS 6 ik, COS CO j it, COS i , COS

sin ( -Ih, sin(J h'j

(22.24)

After reduction to linear form, we obtain the conditional

correction equation

in which

128

- aCIVTih, + 2-lia, - (
1
3V jh, a4v8k, - a5v 1 , -+ avia, +

'T- qtTih, + a 8% Vai a, Vva, + a (Q - ~i) + b (-j - C) -k W = 0,

OF cos 6 ik, COS (Y, ih) (AX sin , " o 4- s O j,),
ci 1 *- Sin2 (M'ih, - Vih ) AXj Si jh, AZ8 COS T )j,

OF sin '¥
sin ik, (AX- sin Yih, + A Z, cos y/a,),

aSi, ==j" - O

OF cos i (AX sin i8 + aZ
Si= --

CL4_ O -0

oF CO ik' COS(h (¥l,- Vik,)
0--Fic, s cins (vi'. -- ¥ak,) ( AX,, sin Vill. + AZ,/ cos¥1j,

OF sin 6is (- AXJ sin yi/, + AZ,1 COS Yi/)
-Kh2 ~sin ?~k i2

aOF cos
CLe7 '' ~~ -- ' sn (ik-Y,)('- AX,1 Sn ¥ih2 q- AZgq cos¥i,)

OFas-- JF 0--

OF
%9 = -Ap-. = i,

OF
a A-.- D,

b -/' =E.
0 AZlj

W =Ap- D' AXq1 ->- E'AZ

(22.25)

/87

(22.26)

(22.27)



In complex space triangulation figures, we may encounter the

most varied combination of measured directions and differences in

distances. However, the conditional equations occurring in this

case may be reduced in the final analysis to conditional equations

of synchronization planes and to conditional equations of the

differences in distances, similar to those which we have presented.

The Order of Adjustment

Preliminary values of the coordinates of the observation

points to be determined should first be established in order to

compile conditional equations. This may be accomplished by

different methods, for example, by sequential transfer of the

coordinates from initial points through elementary space triangu-

lation figures, omitting calculation of AES coordinates.

An important process preceding adjusting calculations is

the selection of conditional equations and enumeration of their

number.

The number of equations of the synchronization planes may be

calculated by the formula

$

p := st[i + (nz-- 3)1,
1- (22.28)

where s is the number of observed AES; and m is the number of

directions converging at a given AES position. The number of

base conditional equations for chord bases, the measured dis-

tances to the AES, or the difference in distances is equal to

the number of these values.

The weights of the measured values are established by the

rules outlined in Section 21.
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Joint solution of the conditional equations under the

condition
[pvv] - 2 k, {[av] a,t- b,li+Crtl =min

leads to a system of normal correlation equations and coordinate

corrections of the observation points, which has order r + 3P,

where r is the number of correlates equal to the number of con-

ditional equations, and P is the number of observation points

to be calculated.

By combining into separate groups the conditional equations /88

containing corrections for the same measurements, partial inde-

pendence of the normal equations corresponding to them is achieved.

The described method is rigorous for adjustment of space

triangulation networks of any construction.

23. Adjustment of Space Triangulation, Formed by

Planes by the Parametric Method

If space triangulation is constructed by simultaneous photo-

graphic observations of each AES position from two observation

points only, the conditional equations of the synchronization

planes are independent of each other.

Having expressed the conditional equation of plane (22.1)

in explicit form with respect to corrections for additional

unknowns, we obtain

-Ak t-B-l-i-Ck i- AkJ 4+Bk%, +Cktq-lke=k (23.1)

where Ak, Bk, and Ck are the coefficients of the plane equations

which are calculated by Formulas (22.2). The free term is
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(23.2)k = A, (X -Xq) -' B' (Y Q- Y°)+Ch (Z--Zb),o F B( I II I

where X0, Y, and Z0 are the preliminary values of the coordinates

of points i and J. The right side of the equation is

e -(-vik + a2Zik + aCtLvi h + C4Vi.h), (233 )

where a are the partial derivatives whose- values are calculated

by Formulas (22.2).

If the measurements have systematic time errors, the equation

assumes the form

k = -Ak-Bk-Ckt+ ktP- i +-Bk'li + Ck + (lczk d- aC2kC) + (23.4)(23.4)
-+ (ac3 k1 + U4kji) a,, -+ tk.

The unique feature of Equation (23.1) is that the value

which it describes is actually not measured. It is a single

geometric image (plane), obtained on the basis of'several measure-

ments. Nevertheless, Expression (23.1) may be considered as a

correction equation both formally and in essence, since the value

k expresses the error of calculating the given plane.

The weight of the equation of the synchronization plane is

calculated by the expression

Pk ±2+ ± a +(23.5)

Plk- Palk PTlk Ptlk

Joint solution of the system of correction equations (23.1) /89

under the condition [PSkCSk] = min, which is equivalent to condi-

tion [pYvyv ] + [p6v6v] = min, leads to a system of normal

equations whose order will be equal only to the number of the

unknown coordinates of the observation points to be calculated,

i.e., 3P. 131
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If there are separate AES positions in the space triangula-

tion network observed from more than two observation points, and

(or) there are linear measurements, the combined method of adjust-

ment by the parametric method may be used, when the synchronization

planes and direct measurements are considered Jointly as measured

values. When adjusting for AES positions, observed from three or

more observation points, by this method, as well as for linear

measurements, the correction equations are compiled in the same

way as in the parametric method. The equations for correction

of planes (23.1) are compiled for AES positions observed from two

observation points only. Two partial systems of normal equations

are compiled for the two groups of correction equations obtained.

The first system includes the unknown corrections of the coor-

dinates of observation points and AES positions. This system is

solved until elimination of the corrections of the coordinates

of AES positions. Afterwards, all the coefficients of the trans-

formed system are added to the coefficients in the case of the

corresponding corrections of the second partial system. The

order of the connecting system of normal equations obtained, whose

solution gives the corrections of the observation points to be

determined, will be equal to 3P.

The combined method will also be rigorous for adjustment of

triangulation of any construction.

24. Adjustment of Space Triangulation Constructed from Chords

If each AES position in space triangulation is observed from

two points only, all measured values may be divided into groups,

each of which is related only to a single chord, connecting the

observation points. Adjustment may be carried out in two stages,

with such a construction of space triangulation. In the first

stage, the most probable values of the unknowns which characterize
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the position of the chord itself are calculated as a result of

adjustment of the values measured directly. The second stage

consists of adjustment of a three-dimensional triangulation network

constructed from chords. This method of adjustment (if simultan-

eous photographic observations only are carried out in the network)

has been named the "method of closing directions" in the litera-

ture.

The orientation angles of chord A and D and its base D are

used as the "measured values" in adjustment of triangulation of

chords (in the second stage). However, all these values will be

dependent, because their values are calculated as a result of

adjustment of the same measurements in the first stage. There-

fore, as a result of the first stage, along with the most probable

values of corrections of values A°, 0, and Do, we must calculate /90

the elements of the correlation matrix

q .A, q.A' I-D 1
QAqD-- qq q:~QA1D [ qq)D, (24 . 1)

qr, qDwD qDD

which is required for the second stage of adjustment.

The parametric and conditional methods are applicable in

both the first and second stages of adjustment of space triangu-

lation constructed from chords.

Let us consider specific uses of these methods.

Adjustment in the First Stage by the Parametric Method

If space triangulation is constructed only from simultaneous

photographic observations, each measured value y and 6 is con-

tained only in a single equation of the synchronization plane and,

consequently, these equations will be independent.
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In this case, each planar equation of (16.9)

Fk :-= tg 6. sin (Ali- - YVi) - tg 6ik sinll (ik - Ai) + tg ()1i sin (Oik -Vik) = 0

may be represented in the form of correction equations. By re-

ducing it to linear form, we obtain

Ck=akAAtI-bk A Ii, +lk, weight Pk, (24.2)

where

OFk
ak = d- -tg oik cos (¥i.-' Aii) + tg 6ik cos (Vk - Aii)

______ ___ 1'(2 14 .3)= sk -sin (ih- Tik)
dq 7 icos 2 %)i

lk = tg 6ik sin ( At/- Ak) + tg ;k Si A) tg ( Si (Ys (24 . 4 )

The values AiJ and iJ are calculated from the preliminary coor-ii ij

dinates of points i and J according to Expressions (16.13). The

weight of each Equation (24.2) is found from Formula (23.5), in

which

al = d % = tg 8ik COS (¥lk-- Aij)- t9 e; COS (ask-Yik)wa% - a~- =- tg O# cos (¥ik-.A1 )- tg x cos k),

OFk sin (Ail--Yik)
-, (2/4.55)

"o3 0---= - tg kcos (Ai- V/k) -tg ()ti cos (Vik-- k),

8rx sin (]'/k - Ali)
a 

6 1k cos 2 6
ijk

Solution of the system of Equations (24.2) under the condi-

tion [PkCkCk] = min leads for each chord to a system of two nor-

mal equations, as a result of which the correction values of A

and A. are obtained, as well as the elements of the correlation

matrix
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QA(D q<> [ (24.6)qDA qTDD

If space triangulation contains both the angular measured

values (y, 6) and linear values (p, Ap), the conditional equations

of the synchronization planes become dependent, because the

measured values y and 6 will also be contained in the conditional

equations which occur from being combined with the distances and

differences in distances. In this case, the plane equations may

not be considered as correction equations, and corrections of

directly measured values may not be expressed in explicit form

only by the unknowns A, 0, and D, which characterize the direction

and length of the chord.

For this situation, the coordinates of AES positions and the

coordinates of one of the observation points at the end of the

chord may be selected as unknowns in the first stage in adjust-

ment by the parametric method. The second point should be con-

sidered as the reference point, because we are interested in the

given case only in the mutual position of the chord ends.

The equations for correcting the measured values vy, v6,

vp, and vAp have exactly the same form as adjustment of the

entire triangulation by the parametric method (21.3), (21.8),

(21.15), and (21.19). However, these equations do not contain

corrections of the coordinates of point (i), and the corrections

of the coordinates of the other point (J) actually become the

corrections of the differences in the coordinates (C = dAX,t,

-= dAYii, ,- = dAZ,).
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As a result of solving the system of normal equations for

each chord separately, the value of the differences in coordinates

AX, AY, and AZ and their correlation matrix are calculated

qAx AX1A Ax ' qAx AZ

QAX, A', AZ=- qAYAX qA} Al- qAyAZ ] (24.7)
qAz AX' qAZ A- qAZAZ

In conclusion, the values of A, $, and D, which correspond

to the adjusted values of AX, AY, and AZ from Formulas (16.13),

are calculated for the second stage of adjustment.

To obtain the. correlation matrix (24.1), and taking the

fact into account that A, 0, and D are complex functions related

to the measurements by AX, AY, and AZ, by differentiation of

(16.13), we find

dAk fil /12 f13

d. f2 1 -2 f· .i 1 (24.8)
dD if31 f32 /33

where /92
Al'dA - a2F i:Ff -= 'd- QX AX2--A y2,

OA AX
fi" '-- %-E = Ax2+ay-,;

fl~,= o^ =0;
OAZ

8~I) fiX' AZ
0 AX4AZ-- a a= (AX2--:AY'2-FAz2) ' JfAX2 --AY2

OCP AYq-AZ
22A---- = (AX2_+AY2+.AZ) (AX2+_A92--;(2q..9)

/) AX2-, Ay '
f/n =-o-az ' = = a-X2+Ay2-L--AZ2;

OD A Y

/31'VrAi[ X'-AYl2- AZ"

OD AZ

01)= AZ,-a_-= _--__A.__azIa s9 A Y yITAy27Az
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Now,

f1 f13 1qAX AX qAX Ay qAX AZ
QAaD =[21 f22 2'3 .q AY AX qAY AY qAY AZX

-f3i f32 3 qA zAx qAZ AY qAz Az

1ll fl2 f3TA qAA-Aq) qAD (24·. )
X hi1 h 12 f23 = qq), q1PD

f31 f32 f33 q - q D : qD qDD

AdJustment in the First Stage by the Conditional Method

with Additional Unknowns

Depending on the composition of measurements in the space

triangulation figure from which the given chord is calculated,

plane conditions and base conditions for the measured distances

and their differences may occur. It is obvious that corrections

must be introduced into the orientation angles AA and A and

correction in its base AD in this case, as additional unknowns.

In the general case, the conditional equation with additional

unknowns for any composition of measurements will be

]akv-i -a-AA+ bAq,+c,AD a-W,=- 0, (24.11)

where vk are corrections of the values measured directly, and the

coefficients ak are calculated by the formulas of Section 22.

The values ar, br, and cr are partial derivatives of the form /93

a = DF/DA, b = aF/W4, and c = aF/0D, which may be easily obtained

from consideration of expressions for specific geometric conditions.

One correlate in the system of the normal correlation equa-

tions and Corrections of additional unknowns will correspond to

each conditional equation. Thus, a system of normal equations

will have an order equal to r + 3, where r is the number of
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conditions and 3 corresponds to the number of additional unknowns

corrections AA , A , and AD
iJ ij iJ

As a result of solving the system of equations under the

condition
[pvv] -2 > kA, ([av] -f aA .- + bAD + CrA.D) = min

for each chord, the corrections of orientation angles (A A AO)

and chord base (AD) of interest to us, as well as the correlation

matrix (24.1), will be obtained in addition to the values of the

correlates.

Adjustment of Chords in the Second Stage by the Parametric Method

In adjustment of space triangulation constructed from chords,

the values of A', Z', and D', found from adjustment in the first

stage, are used as the measured values in the second stage. The

correction equations for this case are presented in Expressions

(21.12) and (21.15), where the symbols 1ik' mik, and nik should

be replaced by Lij, Mij, and Nij. The free terms of the correc-

tion equations are calculated by the formulas

A AO -A'

lo=° --, (24.12)

ID = Do D',

where AO, 0, and Do are the orientation angles of the chord and

its length, obtained from the preliminary coordinates of ground

points.
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Since the values of A, *, and D for each chord will be

dependent, the generalized least squares principle vTQ- v = min

must be used for Joint solution of the system of correction

equations. The use of this condition leads to a system of normal

equations of order 3P (P is the number of observation points to

be calculated)

ATQ-1AX =ATQ~IL, (24.13)

where A is the matrix of the coefficients of correction equations,

L is the vector of the free terms of the same equations, and X is

the vector of corrections in the coordinates of ground points.

The elements of the correlation matrix Q are calculated in the

first stage of adjustment.

We note in conclusion that the reciprocal correlation matrix

Q-1 is simpler to calculate if the correction equations, in which

the unknowns are corrections AA, A., and AD' are used in the first

stage of adjustment. Actually, the system of correction equa- /94

tions, related to the given chord, is written

a: b1 C2  1e

AD
ar b, cr, -

or in generalized form

aA+ L =-e. (24.15)

The normal system, corresponding to (24.15), will be

aTP~aA +aTpJ,=O (24.16)
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Hence, we find the correction vector A AA, A. AD}.

A =-(aTPa)-1 aTPL =-QaTP6 L, (24.17)

where Q is the correlation matrix (the matrix of weighting factors)

of system (24.16).

The reciprocal correlation matrix Q-1, which is required for

adjustment of chords in the second stage by the parametric method,

has the form

Q-l=[ (aTPaa)- 1]-l= aTPja. (24.18)

Thus, if corrections AA, AO, and AD are calculated directly in

the first stage, matrix Q-1 coincides with the matrix of normal

equations of the first stage.

Adjustment of Chords in the Second Stage by the Conditional Method

In adjustment of space triangulation constructed from chords,

introduction of additional unknowns - corrections in the ground

point coordinates - is useless, because the planar equation

passing through three observation points is satisfied for any

values of the coordinate of these observation points. Therefore,

the conditional equations of coplanarity of three free vectorsi

as well as the polar, base and coordinate conditional equations

must be used in the second stage. Calculation of the number of

conditions of each type may be carried out by the same rules as

for two-dimensional networks. We should add that the polar and

base conditions in a space network formed by chords are perceived

"by the eye" as similar conditions in a two-dimensional network,

and the conditions of the coplanarity of three free vectors are

perceived as the conditions of triangles with variable angles.
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The coplanarity condition of three chords, belonging to a

single three-dimensional triangle (the condition of the plane

of three observation points), according to (20.5),has the form

J LI L2 L3
F=--Afl M, 2 M3 = :0, (24.19)

N' N 2 N3

where Li, Mi, and Ni are the direction cosines of the chords cal- /95

culated from the orientation angles of chord A' and 4', adjusted

in the first stage. By reducint (24.19) to a linear form with

respect to corrections in the orientation angles vA and v,, we

obtain
3 3

or , )'%- IF,A i- i[ W -= 0.
1O1) A a(24.20)

Representing the partial derivatives of (24.19) in the form

OF PF OL al aOM Of I O
aAU aLd + TM a A9X + dlrd

OF OF OL OF Oa - ON (24.21)oa - -/L'OX q OM O

I) a-~OL aO(D' +3t O(iD d -' ao'

we obtain

OF
Al = -- Ai q- LlB (24.22)

OF C1
cos (t)a '

where A, B and C are found from Expressions (16.3) with replace-

ment of symbols Z, m, and n by L, M, and N in them. The free

term of Equation (24.20) is calculated by the formula

W=L'A' +-AI'B' + -N'C', (24.23)
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in which all values are calculated from the values of A' and $',

obtained in the first stage of adjustment.

The conditional base and polar equations formally have the

same form (otherwise, only the free term will be calculated).

Expanding Expression (20.9) in a series, we obtain

vaA1 a EA, v+ W =o, (24.24)

The coefficients of Equation (24.24) may be represented by

OF 7 ( OFk ONk OLi OF Ohk a11 l  OF Oak ON,
.- OLi-- ' OAi Ob  0/ ' - ONi OA

(24.25)
OF ~ ( OF aO3k O, OF OF OM O ON O~i.

OW L O(i7 O~k Oa- 1 O.a)O,

where Sk are the angles of the three-dimensional triangles formed

by the chords and t is the number of angles in which the given

chord is contained.

Having calculated the partial derivatives in (24.25), we /96

find the following expressions for the coefficients of Equation

(24.24)

F - (LM-. L1M,)-all-LM si P

1oF' = t9 () s'l k (24.26)
Odi, . i :cos (Pl Ai--j0~ )

where i and J are the numbers of the chords which form angle ik'

If the bases of the chords are measured in the network,

Equation (24.24) assumes the form

OTv As- V O~ t ' +2 4 - = O (24.27)VDF V"ki 01 i -T2(24.27)
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where vD are the corrections for the measured chord bases.
Di

The coordinate conditions for a network constructed from

chords have the form

x = a_ LD-- AX,
=3I 1 D1-A~y, (24.28)Tr = jA1tDi -- AY,

Tfz = NiDi-AZ.

Henceforth, we will use the conditional equation only for

the abscissas, since the other equations may be obtained in a

similar manner.

By reducing the function yX to linear form, we obtain the

following conditional equation

VAt A -.-. va), + Wz =. ,
2 M= (24.29)

in which

'OA-= i dIT' (24.30)
aPx OLt  ODl
ao'-' = a, D -O- Lo.

Having calculated the partial derivatives which are contained in

(24.30), we obtain

-, =LD (- 1)2Ct [k (LIMi - tM),O-nrx

=D 1  ctg (/-A t cos~), (24.31)%1 =-- ArDI cos A + LiDl  (-2) sin [1 cos (Pkp

1

where the symbols t, i, J, and Sk have the same meanings as in

Expressions (24.26).
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If the chord bases in the network are measured, the form of /97

the coordinate conditional equations will be simplified consider-

ably; thus, the equation for the abscissas is written

AXt v A 1 v~W 0-- v A, v,- AXI ~,,~i,7 '% + .1-D~'v ,+ O~ =.
DIAYuA csdD ad D 1- =° ( 24.32)

The set of conditional equations which occur in the given

space triangulation network is written in matrix form

U dV--W= 0, (24.33)

where a is the matrix of the coefficients of the conditional

equations, V is the correction vector for values A and 0, and W

is the vector of free terms. Joint solution of Equations (24.33)

under the conditions of the generalized least squares principle

vTQ-1V = min leads to a system of normal correlate equations

aQUTK+- TT =O, (24.34)

in which K is the correlate vector and Q is the correlation matrix,

obtained in the first stage of adjustment. Having calculated the

correlate vector from System (24.34), it is easy to find the

desired correction vector for the orientation angles of chords

A, ~, and D

V=QuT C. (24.35)

We can avoid the use of the correlation matrix of "measured

values" in the second stage of adjustment by introducing a

special local coordinate system for each chord in the first

stage of adjustment. Introduction of this system, one of whose

axes is aligned along the displacement of the end of the chord
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in terms of altitude (h), and the second - along the displacement

in terms of azimuth (a), was proposed by L. Aardom, A. Hirnius,

and G. Veis for adjustment of space triangulation constructed by

the Smithsonian Astrophysical Observatory [46]. Due to the fact

that the axes of the error ellipse in the direction of chord ij

are oriented along axes h and a in a plane perpendicular to the

direction of the chord at point j, correlation between corrections

for the direction of chord dh and da will be negligible.

Let us consider the relationship between corrections of the

orientation angles of chord A and $, and corrections of dh and

da.

The corrections of dt and dA cos t are also located in a

plane perpendicular to the direction of the chord at point J,

along the axes of a plane rectangular coordinate system, which

are the traces of intersection of this plane by a plane passing

through the chord parallel to the Z-axis of a geocentric coor-

dinate system (z) and a plane passing through a chord perpendi-

cular to the first plane (s), respectively.

The axes h and a in a plane perpendicular to the direction

of the chord are traces of a plane passing through the chord and

the origin of geocentric rectangular coordinates and of a plane

passing through the chord perpendicular to the first, respec-

tively. Thus, the axis h is approximately perpendicular to the

Earth's surface.

The coordinate system h, a is rotated with respect to the

system z, a by angle a between a plane passing through the chord

and the origin of the ground coordinate system, and a plane

passing through the chord parallel to the Z-axis. This angle

may be found from the expression
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cos a=--
(Y 1Z-- Y1Z1) (Y¥---Y,) -+- (ZXi-ZiXi) (-X -Xi)

Y=== -t _YlZi)q(Zl)2_1 (XaY. -XiY 1)2] [(yi~i (l~ ]  (24.36)

For adjustment in the first stage, let us represent the /98

correction equation of the synchronization plane (23.1), having

divided it by Dij, in the form

E=Ak dLi- -14k dAIi--CkdNii-f-TV+, weight Pk. (24.37)

Transition from corrections of the direction cosines of the

chord to corrections of the orientation angles Ai and iJ isii ij

calculated by the expression

-dL -shi A -sin d) cosA
dilI= Cos A -sin (P sin A [ cAos (24.38)si n^A (24 38)

- dN - 0 cos (D d -

Accordingly, transition from corrections of orientation

angles to corrections of dhij and daij is accomplished by the

formula

dA cos(P 1 [ -- sin a cos a Ar dhc [
dtI) cosa sin C Z da ' (24.39)

The correction equations in the first stage, on the basis

of (24.37) and taking into account (24.38) and (24.39), will be
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, L aL OA cos -) OL a) -.e~= A aA co(l)- D d d lB LaAcos $L dh +- a ) ' Oh j+

OMd OA cos q) a m O(.Oh +q-r aLOh

t{ {A [~xtS D~l*aco +a-) ±L J-] (2)4.40)
O Cs A cos (() d M O

+ LC OAScD Oa 0+ 5( a dh+
=[A (sinAsin-sin ) cosAcos)-B(cosAsin-sin sinAcos)+

.'Ccos cosa] d+[-A (sinACOSa+sin cosA sin a) a-

-B (cos Acosa~-sin qP sin Asinaz)+Ccos d)sin a] de+W',

where
e£ =-L Yh + AI-ay + BC )

( Acsq OL

(~~ DA OB C /B B D

- .+ It 'OA as k, -()L M -a - N -

0 6 A+-~~- 06 k/ \ 
0YI)]Yk j (214.140)

- LO a- MA f OarN -a( ) Vk .

and the values of the partial derivatives are given in (22.2).

As a result of the first stage for the direction of each
chord, we obtain the corrections of dhin and da and the matrix

Q~~~~~~~ []ho](2

or the weights Ph and Pa

O~~~cosO (I) ' O } () aq

0( A cos (I 'C Oa '-} (L OaoVe

The valu es of dh and da sin the second stage are regarded as /99

"independent measured" values.n in sco s a

"inepedn esredvaus
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For their adjustment by the parametric method, the following

correction equations are compiled.

( Oh 0() h OAcos (D\
.A A Cos (-) AXi

0(1' 0aaY da COS (1 (JAY / ,

0( 81, ~ os]
' f Aos () dAZ --- ) (' 1 -o)+s 1q, Ph: (24.43)

dVa 00) Va VaAcosa)f

Oh e(l) Obo

Va+jW Ko -dAX- + ~a. Cos ) d AX (i

/ Oda . .. a VA cos ci)A_, d b AOAcos) a AY/ ( Oa il ) + aCo

\-o-$-~-Z7A o os q) oz(-.0:Ji /%:l

+ ]a a 00 + a 0A Cos c*a l- ) i-'
aaOA co s O)) . A

Taking into account that[ dh [ cos ,a -sin a F
da J sin a cosCF ACos ac/I) (24.44)

and [ AXAZ AYAZ

r, q) D2 J/A,_f'E-_-^A2 D2}FE52,\r D2 X
cos AY AX

[d 0' [ D2 1~Y A+A~Y2  DI 1AX2 4~AY'2

( 1 (24.45)

I AXAZ (os al] '

X (cos1ib) '

Theqakiong winto haccun thator

J /X[ -h ( D [osayA.sin)(I-i-

D1X2 -t AY2 ( DYA cos AX- sina) (ai- oc

D YA2-[AX29 + D AY 2 -l

+ Din2 [ c sa(- ] (24.46)

and AX~ AZz ~ x~,y-

= D X'T (AX AY 1a ) -*- ) +

D ( -D uA Z sinc osu (Ai- .Y o)sa

D ]/X2AY2.[A-' DJ ]//'I~

l7Ax -T 2.j D)
t 2 Iatin w sin lla +j- t-doi.
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In adjustment by the conditional method, the conditional /100

equation of the coplanarity of three vectors - the directions

of chords (the condition of "a three-point plane") iJ, jk, and ki,

on the basis of (20.5), is written as

[ OF [1L Bad) dL OA cos a)
L Z -ital OT, .,+ a s COS(F- a], )+

dLF ah ) O A Acos (I) Oh

+ dj~> d(03 d/ + Ba~cO Bcsz ) >
OF' (ON Ba) .V BA cos a)

+ ViO (L-a F + hdX co S) Oh Vhj4-

Fr OF BOL a) 0aL BA cos i)
BL~ (Ba d) ±B+ A cos ) da )

aLii q ~ A~oSD O

aF 1 a1 dt OM dA cos a) \

+ ~B OA cos a) Oa

+ (ON 1a OAcos a) (24.47)
+ajj B~l a +A acos a) B a )vjj+a+0+

0 I-k B a, Oh - OA cos a) OhF (OM OA cos a))

d~BMp ~ I0F OA Cos (I) Oh +

aF (OXa) ± Dl OA cos (D[ a'-~ /(Q) al +  OAcosq) * a +

1 OF ON ABa) + ON Cos 0

a d_ A Ba aAr- accos () ak

'a-'A'-, I a, Oa + qa OA cos ¢, Oaa ka +1'F=°;

where

- -F (24 .48)

F0 is calculated from the preliminary coordinates of points i,

J, and k.

F' is calculated from the direction cosines L + dA, M + dM,

and N + dN, adjusted in the first stage, of each chord by using

(24.37) and (24.39) in succession.



25. Information about Adjustment of Space Geodetic Networks

Created by the Orbital Method

Space triangulation is the basic, but not the only, method

of creating space geodetic networks.

It is assumed in space triangulation that every AES position

is not directly related to others. However, satellite motion is

actually subject to specific laws. If at a given moment to a

satellite is located at point ro(x0, y0, z0) and has a velocity

v0(x0o yo, z0), at the next moment tk it will be located at a

quite specific point rk(xk, Yk' Zk) and will have a velocity vk

(xk' Yk' Zk) ' Consequently, at any moment tk the coordinates

and velocity of a satellite may be expressed by its coordinates

and velocity at some initial moment to

rk=vi(xo'Y, ~Zo, X0,YO'-Z'O' W (25.1)
V= V2 (Xo, Yo, Zo , Xo, &o , Zo, tk),

For all measurements made at moments tk within the interval /101

At, we may compile equations which connect the coordinates of

observation points i and the running coordinates and components

of the velocity vector of the AES. These equations are presented

in Section 15 for measured values of aik, 6ik, and Pik. The

equation for Ap is also presented there, but in the orbital method

this measurement may be replaced by the radial component of AES

velocity - Pik' To derive the equation linking p to the unknowns

- the point coordinates (Xi, Yi' Zi) and the orbital parameters

(xks Yks Zk Xk' Yks Zk)' it is sufficient to use the relation

which ensues from Figure 39,
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POik = vk COS P.

Taking into account the fact that

cos [3-- - (AXk.ai q- AY) yk-k AZikk),Vkpw XI h

we will have

=
Pik ~ -,- (AXikXk + A YikYk -4- AZ,,ikzk).Pik

(25.2)

Figure 39.
Linearization of the observation

equations leads to the correction equations

sin c.

cos a sin 6

Pp
COSCLCOS O

(k _ P AX

Vc~

Vs

- p kV.up

cosa 0
p COS 6

sinasin 6 cos
P P

sin a cos . sin 8

{( P pA} p pZk

d (xk-X,) -X

d (Yk-yi) 1 -

d (Zk - Zi) 16
X dxr

_ 1. _ik
dyk - k

- dzk -

0

0

0

AX
p

0 0

.0 0
X

0 0
AY AZ
P P - k

or in reduced notation

a (a, 65, p, P)ik
O(z, y(, y, x, x, ),

d .~ , , Z , Z)k

- (X, Y, P)5 d (X, r, Z)t -- L.

k

(25.3)

/102

(25.14)
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The weights of correction Equations (25.4) are established

according to the measurement accuracy.

Reducing Equations (25.1) to linear form and substituting

the result in (25.4), we obtain

V- (--P.-P( '  . y, Z,_____ (z, Y, z)k
(z, y, z, y Z)k ( , Z, ,zX Y', )o

xa~~~~~~~~~x, y, ~ ,~ )_~6 , ~Y z)0x d Y, P'~)ik(25.5)
0 (X, Y, , Y, Z)-'- (-

+L= QRd(x, y, z, x, y, z);--Sd(X, Y, Z)+-L.

Essentially, introduction of Equations (25.1) and the

transition from correction Equations (25.4) to (25.5) indicates

conversion from the space triangulation method to the orbital

method of constructing space geodetic networks. In the orbital

method, as can be seen from Equations (25.5), corrections for

some elements which characterize the entire orbital arc in the

assumed time interval At are sought rather than corrections for

the coordinates of individual AES positions. Depending on the

extent and distribution of the measurements, and the accuracy of

the precalculations of the AES positions (the accuracy of numer-

ical integration of the equations of motion), the values of the

refined arcs may be different.

A group of correction Equations (25.5), to which corresponds

a partially independent system of six normal equations, is com-

piled for each arc according to the number of measurements. The

form of the upper right side of the general symmetric matrix of

the coefficients of the normal equations, which occur in the

orbital method, is shown in Figure 40. This matrix, as in adjust-

ment of space triangulation by the parametric method, is ideal

for solution of the system according to the Pranis-Pranevich

method.
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The orbital method, as already mentioned, makes it possible

not only to calculate the mutual position of observation points,

but to relate the origin of the coordinate system to the Earth's

center of mass. Therefore, in adjustment of a network construc-

ted by this method, along with correction of the coordinates of

individual observation points, we can calculate the corrections

common to all observation points by conversion of the coordinate

system origin.

The initial equations of the orbital method are those

Equations (25.1) which we formally introduced. Actually, obtain-

ing these equations is a very complex matter and is one of the
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important branches of celestial mechanics. The motion of a /103
satellite in the general case is described by a system of three

differential second-order equations

01'+ "Q.

- - Q, (25.6)

Z -- +N-- Q,,

where aV/ax, aV/ay, and aV/az are the components of potential

forces; and Qx' Qy' and Qz are the components of forces having

no potentials.

A large number of forces act on AES motion. These are

primarily the gravitational forces of the Earth, Moon, and Sun,

atmospheric drag, light pressure, etc. Rigorous integration of
Equations (25.6) with consideration of all effective forces is /104

impossible. Therefore, in all cases approximate methods of their

integration must be used.

As can be seen from Formulas (25.5), integration of the

equations of motion is required for two purposes: first, to

obtain the free terms of the correction equations, and secondly,

to calculate the coefficients of matrix R.

It is natural that, in calculating the free terms, the

errors committed in integration of the equations of motion will

lead to methodical errors in the solution; therefore, in the

given case the most accurate of the known methods of integration

must be used, taking into account all known perturbing forces.

It is now possible, due to the use of high-speed electronic

computers, to employ numerical methods (for example, Runge-Kutta

or Adams methods), which make it possible to obtain more accurate

solution of Equations (25.6).
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Using numerical integration of the equations of motion

(25.6), we can calculate the matrix of the derivatives of R as
well. For this we must attach importance to the increments of

the initial conditions and to the numerical difference method to
obtain the values of the derivatives for the running moments of

measurements of tk, i.e., a total of 12 matrices must be calcu-

lated.of the form

[Ark, AYk Azk Aak Aij, Azk

where a are the variations of the initial conditions to which must
be added in sequence the values of ±Ax 0, ±Ay0, ±Az0, ±x 0, ±Ay0,

and ±Az0. It is natural that this method of calculating the

derivatives requires additional twelve-fold integration of

Equations (25.6). Even with modern computers this entails sig-

nificant expenditures of time.

Taking the fact into account that the coefficients of matrix

R may be known approximately, we may calculate only the main

effective force in Equations (25.6), for example, by assuming

that V = fM/r and Q = 0. In this case the equations of motion

may be integrated precisely and the analytical expressions in

the form of (25.1) may be obtained for the coordinates and the

velocity components of the AES as a function of the six integra-

tion constants. By differentiation of these expressions, we may

obtain the analytical expressions for the derivatives of matrix

R. The coefficients of matrix R obtained in this way may be

found in Charnyy's work [51]. Several more rigorous formulas

which take into account the linear (with respect to time) secu-

lar variations of the orbital elements are presented in Kaula's

work' [26.].'.

155



The orbital method has three main advantages compared to the

space triangulation method:

- the number of parameters to be calculated is reduced;

- synchronization of observations is unnecessary, and the

solution includes both simultaneous and non-simultaneous measure-

ments, which makes it possible to increase their total number;

- it becomes possible to relate the origin of the coordin- /105

ates to the Earth's center of mass.

However, this method has one considerable disadvantage which

limits its use at present. In order to use this method, it is

necessary to know with high accuracy all the forces affecting the

AES motion.

Obviously, the best solution of geometric problems of space

geodesy in the future may be provided by joint use of the orbital

and space triangulation methods.

26. Comparative Survey of Methods of Space

Triangulation Adjustment

The classification of space triangulation adjustment methods

is based on their different features. Some methods permit joint

adjustment of all observations, and others make it possible to

divide adjustment into stages. In some methods, the coordinates

of all points of the network, including the AES positions, are

used as unknowns, and in others only the coordinates of ground

points are used. There are methods based on the parametric

method of adjustment and other methods use the conditional method

and variations of it. Specific combinations of the different

methods are also possible.
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For subsequent comparative analysis of the advantages and

disadvantages of these methods, we feel it is expedient to divide

adjustment into stages as the basis of classification, which will

correspond to a specific extent to the different methods of con-

structing space triangulation. A diagram of such a classification

is presented in Figure 41.

The problem of selecting the space triangulation adjustment

method is solved by the analysis of a number of factors. The

main ones include the form of the measured geodetic data (only

photographic observations or their combinations with linear

observations), the rigorousness of the adjustment method, the

nature of the construction of the net (free or bound), the

predominant composition of the groups, the volume of computer

operations, and the complexity of compiling programs for calcu-

lations on electronic computers. Let us dwell in more detail

on some of these factors.

A rigorous solution of the adjustment problem by the least

squares method is based on the following assumptions:

- the observations contain only random errors;

- a weight, inversely proportional to the dispersion value,

is attributed to each measurement;

- adjustment is carried out provided that [pvv] = min,

where vi are corrections of directly measured values.

Measurements of the elements of space networks will entail

inevitable errors whose nature and extent depend on the type of

equipment, its analytical capability and reliability, the organi- /107

zation of simultaneous observations, the methods of preliminary

processing, etc.
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Due to the complexity and variety of equipment used, as well

as the enormous scale of investigations on development of space

geodetic networks, the number of possible sources of errors is

so great that the most careful investigations can hardly conceal,

and even less eliminate, the resulting errors. Therefore, the

probability of systematic errors in space triangulation is

increased compared to ordinary geodetic networks.

In many cases, the variance or variance ratio for different

measured values remains unknown, which undoubtedly makes it

difficult to determine the system of weights correctly.

Thus, even the first two conditions of a rigorous solution

of the problem of adjustment in the development of space geodetic

networks by the least squares method may be disturbed to some

extent.

This, of course, should not orient geodesists to the use of

approximate methods of adjusting space networks. Depending on

the depth of our knowledge, many sources of systematic errors

will be eliminated, and then the rigorousness of mathematical

treatment will begin to acquire even greater significance.

Joint adjustment of all observations of space triangulation

by the parametric method and by the conditional method with

additional unknowns is rigorous for networks of any construction.

Adjustment of the planes is applicable only to networks

constructed from simultaneous photographic observations. More-

over, this method will be rigorous if each AES position is

observed from two points only.
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The situation is similar when using the two-stage method of

adjusting three-dimensional triangulation constructed from chords.

If the observation of AES positions, contained in simultaneous

groups, consisting of three or more directions, are used to calcu-

late the geometric elements of the chords, the rigorous nature

of the method is disturbed.

However, the number of such groups and the relationship to

the total number of measurements must be taken into account.

Failure to consider single functions makes it difficult to deter-

mine the weights, whereas rejection of a large number of relation-

ships may lead to a loss of accuracy.

Adjustment of space triangulation constructed from chords in

the second stage of the two-stage method of adjustment will be

rigorous if the generalized condition of the least squares method

is used.

However, for example, this method may be used for a network

of chords with well developed technology and computer programs for

adjustment of the entire space triangulation by the parametric

method. In this case, its use will not be rigorous if the diagonal

coefficients instead of complete correlation matrices for each /108

chord, are used as the weights of the chord elements. The

correctness of assuming it is not rigorous will depend on the

purposes of adjustment, the measurement accuracy and the desired

results. In each specific case of using approximate weighting

matrices, the anticipated methodical errors should be previously

calculated theoretically or from calculations on the models of

the networks.

160



The volume of calculating operations depends on the method

of adjustment. This problem cannot be reduced only to determining

the order of the matrix of normal equations, which originate with

the conditional method or the parametric method. The simplicity

of the algorithms, the cyclicity of operations, and the possibility

of standardization of calculating procedures are of great

importance.

Let us consider space triangulation adjustment methods from

this point of view.

The preliminary coordinates of the AES positions must be

calculated in adjustment of all observations of the network or

of observations of each chord in the first stage of adjustment

of triangulation, constructed from chords, by the parametric

method. Calculation of the preliminary coordinates of AES posi-

tions is not required in adjustment of all measurements of the

network by the conditional method with additional unknowns, as

well as during the first stage of adjustment of a network con-

structed of chords, if the latter are obtained only from photo-

graphic observations.

The form of the correction equations (measured values of

y and 6) is simple and standard in adjustment by the parametric

method.

The form of the conditional equations in the conditional

method with additional unknowns is more complex, but also stan-

dard, if we remember that all conditions are described by the

conditional equations of the synchronization planes, and the

conditions of "fixed" lengths and directions of the chords are

described by the corrections of these "fixed" values. The cal-

culations in writing correction equations for the synchronization
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planes do not differ in any way from those for conditional equa-

tions with additional unknowns, because the weights of the equa-

tions, which are functions of the coefficients in the case of

corrections of measured values, must be calculated in addition

to the coefficients of equations in the case of triangulation

unknowns.

In order to compare the volume of calculations in the dif-

ferent methods, the number of arithmetic operations for each of

them could be calculated. However, such a detailed comparison

has hardly any practical value due to the two following factors.

It was noted above that real measurement accuracy cannot be

judged by the free terms of the conditional equations of the

synchronization planes, since their value depends on the assumed

values of the preliminary coordinates of the observation points.

Nevertheless, calculation of the free terms of these equations,

as indicated by practice, is an obligatory process of preliminary

calculations, because it makes it possible to reveal crude errors

in observations and especially errors in their synchronization. /109

In view of this, the volume of preliminary calculations, including

calculation of the preliminary AES coordinates and the points,

the free terms of the conditional equations of all synchronization

planes and of the coefficients of the equations, will be approxi-

mately the same for the different adjustment methods. The second

factor is the fact that adjustment of space triangulation at pre-

sent can hardly be assumed without the use of universal computers.

Therefore, the slight deviations in the order and extent of pre-

liminary calculations for the different methods of adjusting

triangulation networks constructed only from simultaneous photo-

graphic observations may not be considered as significant.
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The adjustment of space triangulation networks, constructed

from combinations of photographic observations with measured

distances and the differences in distances to the AES, is

different. The equations for correction of the measured dis-

tances and the differences in distances are simple and the

order of their compilation is standard in the parametric method

of adjustment.

The conditional method with additional unknowns is consid-

erably inferior in this regard to the parametric method of

adjustment. We are not only concerned with the very complex form

of the formulas from which the coefficients and free terms of

the conditional equations are calculated. The main difficulty

consists in the geometric "dissimilarity" of the figures of such

networks. Any section of a network of specific dimensions may

differ from another both in the number of conditions and in their

form, as well as in the number of unknowns contained in the

initial conditional equations. For this reason it is much more

difficult to organize calculations by the conditional method

with additional unknowns within the limits of a single computer

program than in the parametric method. This will also be valid

in adjustment of three-dimensional triangulation from chords.

However, in the latter case the conditional method will make it

possible to estimate the accuracy of calculating the geometric

elements of the network from the residuals of the conditional

equations.

The problem of the order of the systems of normal equations,

solved jointly by a certain method, is of definite importance

for comparative analysis of adjustment methods.

Dataiwere presented above on the number of normal equations,

solved in each method.

163



For simultaneous adjustment of all triangulation measurements,

the number of normal equations will be N = 3s + 3P in the para-

metric method and in the conditional method with additional
$

unknowns, N = (2n---3)- r-l-31', where s is the number of AES
5--1

positions; P is the number of points; r is the number of linear

measurements; and n is the number of directions to the position

of each AES.

It is easy to see that, if a three-dimensional network is

constructed only from the measured directions which form synchro-

nous pairs (n = 2), the number of normal equations in the para- /110

metric method of adjustment is greater by 2s than in the condi-

tional method.

In synchronous groups consisting of three directions, the

number of normal equations is identical, and with a greater num-

ber of directions in synchronous groups the number of correlates

exceeds the number of corrections of the coordinates of AES

positions. Addition of linear measurements to photographic obser-

vations increases the order of the systems of normal equations

even more in the conditional method with additional unknowns.

A very large number of AES positions may be observed over

a prolonged period of observations for construction of space tri-

angulation. Simultaneous adjustment of the results of all obser-

vations may lead to a system of normal equations of very high

order (several thousands). Even the use of modern computers

requires a long time of continuous operation for solution of

such a system. The use of a two-stage adjustment method makes

it possible to divide this process into solution of independent

systems of normal equations whose number will be equal to the

number of chords in the network. Moreover, systems of only two

normal equations will be solved in the first stage in the planar

method.
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The system of normal equations in the second stage of

adjusting triangulation from chords in the case of the parametric

method will have an order of N = 3P. The use of the method of

conditional measurements in the second stage requires solution

of a system of normal correlate equations of order N = 2n - 3P +

3P0 + B for a network of the directions of chords and of order

N = 3n - 3P + 3Po + B for a network of the directions and bases

of chords. (It is assumed in the formulas that n is the number

of chords, P is the number of observation points to be calculated,

Po is the number of initial observation points, and B is the

number of "fixed bases.)

The expression for N indicate that in a network constructed

from the directions of the chords, the number of normal correlate

equations will be less than the number of normal equations for

correcting the coordinates, if there are no diagonal chords in

the triangulation (by analogy with ordinary triangulation, there

are no overlapping triangles). In the presence of diagonal chords

and "measured" bases of the chords, the system of equations in

the parametric method will be smaller than in the conditional

method.

As a result of comparing the advantages and disadvantages

of adjustment methods (Figure 41), we can make some recommenda-

tions on their use for adjusting triangulation networks of

different construction.

Adjustment of space triangulation by the conditional method

with additional unknowns is generally feasible, especially for

networks constructed by a combination of photographic and range

measurements.
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Adjustment of space triangulation with relatively small

distances between observation points (small chord bases), when /111

most AES positions are observed from more than two observation

points, is feasible by the parametric method.

Adjustment of space triangulation with large chord bases,

when most AES positions are observed from two observation points

and when there are only photographic observations, is feasible by

the plane method. If a very large number of AES positions is

observed in such triangulation, and also if the observation data

are gradually accumulated in time, first for some chords and then

for others, adjustment in two stages may be used. In this case,

the parametric method is more convenient in both the first and

second stages.
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CHAPTER 6

ERRORS IN THE POSITION OF POINTS IN SPACE TRIANGULATION

27. The Importance and the Problems of a Priori Analysis /112

of the Accuracy of Space Triangulation

A priori investigation of the error distribution in geodetic

networks is the theoretical foundation for solving an entire group

of problems of geodesy, such as development of schematic diagrams

for construction of geodetic networks, drafing designs and their

evaluation, determination of the optimum forms of geodetic struc-

tures, and development of the technical requirements for the

optimum values of the elements (angles and sides) of geodetic

networks. All these problems have always been at the center of

attention of geodesists and their investigation for ordinary

geodetic networks has been continued up to the present time.

These problems are even more timely for space geodetic networks.

We may assume that a priori evaluation of the accuracy of

space triangulation structures follows two goals:

- determination of the anticipated accuracy of a specific

design (comparison of the accuracy of several designs) of a space

triangulation network;

- comparative analysis of different schemes of constructing

space triangulation for purposes of selecting the optimum types

and optimum dimensions of the geometric elements and figures for

use in the design of space triangulation networks.
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We note that in all cases the basic criterion of accuracy

is the error in the position of the triangulation point.

It was mentioned above that space triangulation has no direct

relationships (measurements) in it between observation points,

but the instantaneous positions of the satellite are the inter-

mediate points. In this regard, the number of measured values,

connecting the AES position, is considerably less than the number

of measurements connecting the ground point to the AES positions,

observed from a given point over a prolonged period of time.

Therefore, we should assume that the same requirements should be

placed on analysis of the accuracy of AES positions as on the

individual figures of space triangulation.

We feel that it is more convenient to obtain expressions /113

which are rather simple and descriptive, even if this requires

specific simplification of rigorous, but more complex formulas

due to a decrease in the accuracy of the results obtained, for

a priori analysis of the accuracy of the position of space

triangulation points.

It is expedient to place requirements on the expressions for

the error in the position of points of individual figures, so

that they are invariant with respect to the transformation of the

coordinate systems and contain only the parameters which charac-

terize the "internal" geometry of these figures.

For figures forming a series of space triangulation, it is

desirable to investigate the dependence of the position error on

the form of the figure.
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The expression for the error of the point of a space tri-

angulation series should reflect the dependence of the error

increment on the increase in the length of the series, i.e., the

nature of the accumulation of errors.

Expressions for errors in the position of the points of a

continuous space triangulation network should indicate the depen-

dence of the errors on the distances from the initial points, as

well as on the average values of the distances between points.

Inthe general case, the mean square error of the given

function of measured values is described by the tensor

Ill , i), , (27.1)

where F is the vector of the partial derivatives of the given

function, M2 is the correlation matrix of the errors in the argu-

ments of the function. For independent arguments, M2 is trans-

formed into a diagonal matrix.

For adjusted values of the arguments, Expression (27.1)

assumes the form

' " Reproduced irom
(L0/ i' lsavaiElabl cp:Y.

.,,I -, 9 Le P I'a _( 27.2 )

where p is the error of unit weight; and Q is the reciprocal

matrix of the system of normal equations.

Tensor (27.1) is used to the full extent for a posteriori

analysis of accuracy, possible after adjustment of space triangu-

lation.

For a priori analysis of accuracy, the elements of tensor

(27.1) are obtained with a greater or lesser degree of approxi-

mation.
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The error in the unit weight depends primarily on the value

of the free terms of the coupling equations between the measured

values and the unknowns. In view of this, it expresses the effect

of measurement errors. Moreover, in cases when the initial data

contain errors which are commensurable with measurement errors,

and the amount of initial data and their distribution in the tri-

angulation network is such that they affect the value of the free

terms of the equations, the error of unit weight includes the

errors of the initial data.

The elements of the reciprocal matrix of the coefficients

of the normal equations and of matrix F depend on the value of

the coefficients of the coupling equations between the measured

values and the unknowns and on the number of equations. Because

of this, they reflect the effect of the geometric shape of space

triangulation construction and the number of measurements.

Thus, an error in the function of the adjusted unknowns

depends on:

- measurement errors,

- the errors in the initial data,

- the geometric construction of triangulation,

- the number of measurements.

Design of space triangulation is usually based on the fact

that observations will be carried out by equipment which provides

a given accuracy. In this regard, measurement errors are assumed

to be the knowns for a priori analysis of accuracy. However, a

certain dependence between measurement accuracy and the geometric

shape of the triangulation figures, which has an opposite effect

on the results of accuracy analysis, may exist. Thus, for
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example, the refraction effects in photographic observations of

AES reduce measurement accuracy at low AES elevation above the

horizon of the observation point, whereas (as will be shown

below) it is preferable to observe the AES at minimum elevation

with respect to the optimum geometric shape of the figure from

which the direction of the chord between two points is calculated.

The effect of errors in the initial data on the results of

a priori accuracy analysis must be taken into account to a con-

siderably greater extent than is permitted by a posteriori

accuracy analysis.

Errors of initial data, when the latter number is small, are

often of a systematic nature (error in the triangulation scale,

the total shift or rotation of the network) and are not reflected

in the value of the free terms of the equations, and consequently,

do not appear in a posteriori analysis. The formulas of a priori

accuracy analysis should also reflect such influences. Moreover,

in many cases the formulas of a priori analysis of accuracy of

space triangulation will be based on sequential analysis of the

accuracy of the measurement function due to the complexity of the

figures of space triangulation and its specific features, included

in sequential calculation of first the AES positions, and then

of the observation points. In this case, the errors in the results

of each preceding construction emerge as the errors in initial

data for a subsequent construction, and their effect on the final

result must be taken into account.

The most important factor in a priori analysis of accuracy

is the consideration of the effect of the geometric characteris-

tics of space triangulation construction, because the essence

of the design of space triangulation networks is also included,

as was mentioned above, in a determination of the optimum mutual
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position of the observation points and of the AES positions to

be observed. Therefore, main attention in this chapter is devoted /115

to selecting the formulas for a priori analysis of the accuracy

of the elements and figures of space triangulation, which reflect

the effect of the geometric shape of its structure.

An increase in the number of measurements increases the

weight of the function of the adjusted values of space triangu-

lation. However, this increase should be regarded as comparable

to the required number of measurements to calculate the unknowns.

An increase in redundant measurements when retaining the geometric

shape of a triangulation structure increases the weight in pro-

portion to this increase. The redundant measurements, which

alter the structural shape, are reflected in the accuracy of the

results in a more complex manner.

An inverse dependence, caused by the specific nature of the

observation of space objects, may also exist between the effect

of the number of measurements and the shape of the triangulation

structure on the accuracy of the results, besides this dependence.

It includes the fact that the probability of an AES passing

through positions which are optimum with respect to the shape of

the triangulation structure may be considerably less than that

of passage through a more extensive, but geometrically less opti-

mum zone of the celestial sphere. Therefore, in the given

limited AES observation period, for example, the requirements on

the number of observations may prevail over those on the optimum

geometric shapes of the structures, to achieve a specific accuracy

of results.

Space triangulation in any method of construction consists

of individual figures; therefore, the method of estimating the

accuracy of the points obtained from the individual figures of

space triangulation will be primarily discussed below.
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The expressions for approximate a priori analysis of the

accuracy of elementary figures will be considered below. The

effect of errors in the initial data and redundant measurements

on the results of the accuracy analysis will then be investigated

separately.

In conclusion, the problems of a priori analysis of the

accuracy of the positions of the points of series and of continu-

ous space triangulation networks, formed by the corresponding

figures, will be discussed.

28. Methods of A Priori Accuracy Analysis

A priori determination of the elements of the error tensor

of the function of measured or adjusted values of (27.1) and

(27.2), and especially their analytical representation as a

function of the perturbing factors, entails considerable diffi-

culties. Hence, approximate and stochastic methods of analysis

have become widespread. Let us present a somewhat more detailed

description of the possible methods of a priori analysis of

accuracy. They will depend on the complexity of the object being

studied (the individual element, figure, series or network) and

the permissible degree of approximation of the formulas. For

example, the errors in such elements of a space triangulation

network as the direction toward the AES, the synchronization plane,

the chord, and the apexes of the elementary figures may be deter- /116

mined mined by using the general rules and procedures of the

theory of measurement errors. The estimates obtained should

have been rigorous, but due to the complex form of the functions,

they had hardly any practical value. Moreover, the nature of

the problem itself is such that it is more important to obtain

approximate estimates of simple form, rather than rigorous but

cumbersome formulas, taking into account their future engineering

use.
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It is expedient to use vector algebra - i.e., to consider

the error in the position of a point or in the shift of a line

as some random vector in three-dimensional space - to derive

the formulas of approximate analysis of the accuracy of construc-

ting the individual elements and figures of space triangulation.

This usually simplifies the derivation of formulas considerably

and gives them a descriptive geometric meaning. Moreover, vec-

tor representation makes it possible to obtain formulas for the

accuracy analysis which are invariant with respect to coordinate

transformations, i.e., to express them by the parameters which

characterize the "internal" geometry of the figures of space

triangulation (i.e., by the angles and sides of the given figure).

Geometric interpretation of the errors in the elements of

space triangulation provides a certain simplicity and descrip-

tiveness to the expressions of a priori accuracy analysis. In

this case, we start with the fact that each measurement deter-

mines some position surface in space, i.e., the surface on which

the observation point or the AES position to be calculated is

located. Thus, for example, the measured values of space triangu-

lation determine the position surface: 6 is a cone, y is a plane,

p is a sphere, and Ap is a hyperboloid.

Every measurement error leads to linear displacement of the

corresponding position surface from the true position of the point

to be calculated by a value

nq
- maql (28.1)
I grad q I (28.1)

where m is the error in the measured value q,

Iq(q)+ ( )+(d
\~ 2x J --a/ +d \ 2 z J '
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Accordingly, when deriving formulas for a priori accuracy analysis,

both direct measurement errors and displacements of the corres-

ponding position surfaces may be used.

In adjustment of triangulation, the coupling equations of

measurements with unknowns are linearized .and, consequently, each

position surface near the point to be calculated is replaced by

a tangential plane. Approximation of any position surface by a

tangential plane may also be used for a priori analysis of

accuracy.

The use of geometric interpretation is especially effective

for determining the effect of errors in initial data, because

calculation of the coefficients of the reciprocal matrix of a

system of normal equations prevents this effect from being taken

into account.

Similar analyses for continuous space triangulation networks

are more difficult to obtain due to the large number of connec-

tions between points and the complexity of the functional

relationships.

The method of investigating accuracy with the aid of

stochastic models of geodetic networks is used extensively at

present. This method became possible through extensive intro-

duction of electronic computers into geodetic analysis. The

undoubted advantage of the modelling method is the possibility

of determining the effect of different factors and thus of inves-

tigating them independently of each other, as well as the fact

that an accurate value of Tensor (27.2) is obtained in these

methods. However, this method has a number of disadvantages:

each model of the geodetic network is a random sample - one of
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the infinite number of possible states of the given system -

after distortion of it. Therefore, the measurements of several

tens of different variants of the distribution of measurement

errors must be tested for the same model with the same mean

square measurement error to obtain reliable estimates. This

creates specific difficulties for any theoretical generalizations

about the data of distorted model tests.

A method which is sometimes used to characterize the accuracy

of the measured elements of networks after adjustment is the use

of the theorem of the mean ratio of weights which is expressed

by the formula:

j =n (28.2)
Pmeas

where n is the number of all measurements; and k is the number of

required measurements. However, the estimate obtained according

to this theorem will be too general.

The theorem of the mean ratio of weights is insensitive to

the form of geodetic data. For example, the same numerical

characteristics will be obtained for a network with measured

angular values and distances as for a network with the same

number of angular values and differences in distances. In fact,

even averaged indicators of the accuracy of these networks will

be different. Thus, the use of the theorem of the mean ratio

of weights is justified only for comparison of the accuracy of

networks, obtained on the basis of homogeneous geodetic data.

The most complete analysis of the accuracy of the elements

of geodetic networks, as can be seen from (27.2), is carried out

with the aid of the reciprocal rmatrix of the system of normal

equations.
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As seen from Formulas (27.1) and (27.2), the reciprocal mat-

rix operation must be carried out to analyze the accuracy of the

different elements of a network, which is a difficult problem.

The problem may be simplified somewhat if a special coordin- /118

ate system in n-dimensional space is introduced in which the

matrix of the coefficients of normal equations has an especially

simple form. As we know from linear algebra, any symmetric matrix

may lead to a diagonal form, i.e., we must find a matrix* D such

that

0 ... 0

DFD-1 = A . . . . ' (28.3)DD A........... (28.3)
0 0 . . k

where the values X1, ..., Xk are the eigenvalues of matrix F.

A matrix reciprocal to A will also be a diagonal matrix

-I

_ 1 00

A-= 0 ... 0 (28.4)

O 0 ... ..

It is easy to note that the analysis of accuracy for diagonal

matrices is simplified to the maximum extent.

In practice, we must be concerned with arbitrary matrices.

Therefore, we must consider the relationship of the eigenvalues

of the matrix of the coefficients of normal equations to the

weight coefficients.

*D is the matrix of transition from an arbitrary base to
one comprised of eigenvectors.
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The eigenvalues of matrices have a descriptive geometric

meaning. Let us set a matrix of the coefficients of three normal

equations

Xfil fl,2 h 3I

F= f21 f2 - 2 1f,3 (28.5)
-f31 - 13 2 f33-

and a reciprocal matrix

q[ q.2  q3
F-:"Q= q21 q22 q23  (28.6)

q31  q 32  q33 J

The elements of matrix (28.6) may be regarded as the coef-

ficients of the equation of an ellipsoid, arbitrarily located

with respect to the coordinate axes. For example, the following /119
ellipsoid corresponds to matrix (28.6)

[ 1 1 q 12 ql " ]'

[X y j ]I'I q 22 q21 LI L =O. (28.7)
Lq;: q32 q33 Z

Reduction of the matrices to diagonal form corresponds to

the transformation of coordinates, when the coordinate axes coin-

cide with the axes of symmetry of the ellipsoid. We assume that

matrix Q (28.6) is reduced to the diagonal form

rt 001
T DQD-1- 10t 2 0 (28.8)

LO0 0 t3'
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This means that the ellipsoid equation (28.7) assumes the canonical

form

[t, 0 0]
[xy z] 020 y =

LO0 0tL3Z (28.9)

'-- tJx 2 1- t2Y - t 2 == 1.2

If the Equation (28.9) is multiplied by p2 (the square of

the mean square error of unit weight), we will obtain the so-called

mean square ellipsoid of errors

ti - f't- 2 t -k t =z2 -L (28.10)

where

tt = to,~.

In the space of an arbitrary number of measurements, Formula

(28.9) assumes the form

+ t2X2 +**e -i( 28.11)

and describes an ellipsoid in a multidimensional space.

Thus, the eigenvalues of the matrices of the coefficients

of normal equations are the inverse of the squares of the semi-

axes of a multidimensional ellipsoid. The eigenvalues of a

reciprocal matrix will be equal to the weight coefficients for

the adjusted values of the unknowns only in the case when the

axes of the coordinate base coincide with the principal axes (the

axes of symmetry) of the ellipsoid (28.11). Taking the fact

into account that the eigenvalues of matrix F and its reciprocal

matrix Q are connected by the relation

=X. (28.12)
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we can state that, after matrix F has been reduced to diagonal

form, its eigenvalues will be equal to the weights of the adjusted

values of the unknowns on the base, comprised of the eigenvectors /120

of matrix F, i.e.,

qltit; P."=-. (28.13)

Non-quadratic coefficients appear in the arbitrary coordinate

system in the ellipsoid equation (28.11) in exactly the same

manner as for the second order surface equation, when it is

located arbitrarily with respect to the coordinate axes in

three-measurement space.

A number of relationships exist between the coefficients of

the ellipsoid equation which are invariant with respect to the

coordinate transformations. One of these invariants is the sum

of the coefficients in the case of the squares of the running

coordinates. For matrices, these will be diagonal elements.

Their sum is called the trace of the matrix and is denoted by

Sp. Accordingly, for matrix F we will have

SpF5-I 1Ar. .2 +Tk=2h1± 2 ±. ± (28.14)

Let us rewrite this expression in another form with consideration

of Formula (28.13)

k.

A SPF-k>2[=y t (28.15)

Setting 4/. -,Pcp , we obtain

PC) k (28.16)
pIii'
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From (28.16) we have the relation: the mean value of the

weight of the adjusted coordinates in geodetic networks is equal

to the mean value of the sum of the quadratic coefficients of

the normal equations.

Formula (28.16),like the theorem on the mean ratio of

weights, is the generalized characteristic of the accuracy of

the network structure. However, unlike the latter, it takes into

account the effect of both the number of redundant measurements,

the form of the network, and the composition of the measurements

from which the given network is constructed. Thus, this formula

estimates the accuracy of networks of identical configuration,

but with a different composition of measurements, or the accuracy

of networks of different shape. Of course, Formula (28.16) may

be used only for comparative analyses provided that the systems

of weights in the compared networks are determined in the same

manner (i.e., based on a single error value of unit weight). The

accuracy of calculating the points in the networks will then be

higher, the greater the value of Pcp' calculated by Formula

(28.16). The generalized characteristics of accuracy, obtained

according to the theorem of the mean ratio of weights or the

formula for the mean weighting value, are essentially useless in

an analysis of the accuracy of the position of a specific point

in an adjusted network. It is a very complex problem to obtain

a priori estimates from the elements of the reciprocal matrix

and analysis of them. However, taking the fact into account

that a priori analysis is in one way or another approximate,

the requirements on the accuracy of calculating the elements of

the reciprocal matrix and the requirement to use approximate

methods of its construction naturally decrease.
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Henceforth, we shall use those methods of a priori accuracy

analysis, from those described in this section, which reduce more

conveniently to a solution of the given specific problem.

29. Errors in Space Triangulation Elements

The entire range of the elementary figures of space triangu-

lation, previously considered in Chapter 4, Sections 17 and 18,

with respect to the a priori analysis of the accuracy of the

position of observation points calculated by these figures, may

be essentially reduced to three basic elementary figures:

- intersection of two directions (three-dimensional angular

intersection),

- intersection of the direction and the plane,

- intersection of three planes (intersection of planes).

In this case, the third type of figure - intersection of

planes - may in turn be reduced to a second type, because it

may be assumed to be the intersection of a single plane with the

direction of the line of intersection of two other planes.

Obviously, the main elements of these figures are the

direction and the plane.

Because of the characteristics of space triangulation con-

struction, the relationships between the measured values and

their functions are much more complex than those in ordinary

triangulation networks, since the position of points in space

triangulation is often calculated with the aid of intermediate

elements, which are very complex functions of the measured

values. Therefore, consideration of the problems of a priori
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accuracy analysis naturally begins with determination of the

relationships between the errors in directly measured values and

those in calculating the geometric elements of space triangulation.

In order to derive the formulas for a priori analysis of the

accuracy of the position of points - the apexes of elementary

figures - the errors in the elements of space triangulation may

be represented in the form of linear shifts from the "true"

position of the points. Accordingly, we are interested in the

linear deviation of the plane passing through two points from one

of them (calculated) - due to the errors in measuring the values

which determine the position of the plane - rather than the total

error of the position of the plane in space, which is naturally

characterized by the shift of its normal vector N.

Similarly, we are interested in the linear displacement of

the direction in the plane, perpendicular to it and passing through

a specific point, rather than in the angle at which the directional

error may be represented, i.e., the angular value of the deviation /122

of direction from its "true" position.

We shall use the following notation when considering the

expressions for the errors in the elements of space triangulation:

M - the error in the position of the apex of the figure,

mH - the directional error (linear displacement),

m - the error in the position of the plane,

m6 - the error of the topocentric declination of the AES,

m - the error in the hour angle of the AES,
¥
m - the error in the direction from the point to the

AES position,
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p - the error in the distance from the point to the AES

position,

mAP - the error in the difference of distances from the

observation point to two AES positions,

my - the error in "declination" of the chord,

mA - the error in the "hour angle" of the chord,

mB - the error in the direction of the chord,

mD - the error in the base of the chord,

md - the error in the base of the celestial chord (the

distance between the AES positions),

Mk - the error in the AES position,

Mi - the error in the position of the starting point,

Mj - the error in the position of the observation point

to be calculated,

I - the distance of the observation point from the plane

normal to the celestial chord and drawn through its

center,

X - the angle between the planes,

cp - the angle between the directions,

- the angle between the direction and the plane.

Errors in the Observation Point-Satellite Vector

In photographic observations, the direction from the obser-

vation point to the AES position is calculated by the two measured

values y and 6. The accuracy of calculating the direction will

be characterized by the value of the displacement vector, which
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is located in the plane perpendicular to the given direction and

which passes through the calculated point, or by the angular

value

(29.1)

where AO is the angle between the true and actually obtained

directional position; dp is the displacement vector; and p is

the vector coincident with the measured direction.

For the mean square error in the direction mi, we will have

'm (29.2)

where mH is the mean square value modulo the displacement vector.

Then, differentiating the expression for the direction co- /123

sines (16.1) by the variables y, 6, x, y, z and converting to the

mean square errors, we obtain

r +- m2  COS (29.3)
Mik = rnt' M I Reprdu~ from

bepst available copy._

The mean square value of the linear directional displacement,

on the basis of (29.2), will be

mA,= (29.4)

In photographic observations, cases are possible when the

time of photographing is unknown and because of this, only the

declination of the AES position, rather than the two values which

characterize the direction from the point to the AES position,

is obtained from the astrometric processing of the photograph.
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The declination defines the surface of a cone with an axis
perpendicular to the equatorial plane, passing through the point

and AES position. Because of the error in the declination, the
surface of the cone deviates from the AES position. The conical
surface near the AES position may be interpreted as the plane,
tanget to the generatrix of the cone. In this case

mp Pikm6ik , (29.5)
ik

but, taking (29.3) into account and assuming m2 = m2 cos2 6,

P mik (29.6)mp = P-V

When the angular and linear measurements in space triangula-
tion are combined, the spherical surface, defined by the measured
distance from the observation point to the AES position, may be
approximated in a priori accuracy analysis by the plane tangent
to the sphere at the end of the measured radius vector and,

consequently, normal to the latter.

In this case the error in the distance will determine the
position error of the plane

MP= m (29.7)

If the photographic observations are combined with Doppler
observations, cases are possible when the direction to the AES
position and the difference in distances to this and another AES

position are calculated from the point. For a priori analysis of
the accuracy of triangulation structures, each measured value of
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the difference in distances (Ap) may be interpreted geometrically

as the surface of a double-surface hyperboloid of rotation, on

which lies the observation point and whose foci are the two AES

positions, the difference in distances to which is measured (as

the difference in focal radii). In this case, the modulus of

the observation point-AES position vector may be defined as the

length of the focal radius of the hyperboloid.

Since we are interested in the elements of the internal

geometry of the space triangulation figure independently of its

position with respect to the geocentric coordinate system, we

use the canonical equation of the double-surface hyperboloid of

rotation

9 I 0 ~o

a C2- ' (29.8)

on the basis of which and of our assumed notations (Figure 42),

the length of the focal radius is

Pi., il: - (29.9)*

where the sign in front of the second term is defined by the near

or far focus of the hyperboloid (the AES position) with respect

to the point.

Differentiating this expression with respect to Ap - the

measured value - and changing the mean square errors, we obtain

the formula for estimating the accuracy of the length of the

focal radius or the distance from the point to the AES position

m'=(- A 22) (29.10)elk=(i _~ 1m2 (29-10)
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Simple calculations show that

x ? disregard of the second term in

/11 parentheses distortes the result

'/ i I in the worst case by no more than
l/ ~ /~ ;. // i! *

25%. Therefore, taking into

Xaccount (29.7), we can write

\ / aFormula (29.10) in the form

Y n= ms- -n. (29.11)

Figure 42.

The Position Error of the Plane

Since we will assume that the synchronization plane passes

through one of the points and contains both directions, we will /125
artificially transfer the direction from the second point parallel
to itself by the value of the shortest distance between the

cross directions. Accordingly, the synchronization plane is also
shifted with respect to the second point by the value of this

distance mp. This displacement is the normed value of the free

term of the conditional equation of the synchronization plane and
may be obtained in the process of a posteriori determination of

accuracy.

The shortest distance between the intersecting straight

lines may be represented as the difference in the projections
of the displacement of the directions due to their errors on the

normal to the plane

Ap = I Arcs ~-- l Ailcs l 2 . (29.12)

where a is the angle between the error vector of the direction

AH and the normal to the plane of intersection (the synchroni-

zation plane).
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Assuming that a is a random value with uniform distribution,

we obtain for the mathematical expectation cos2 a

2..

(CO2 2 2 (29.13)

0

Converting from (29.12) to the mean square errors, we obtain

2 _ , Hit-'
p 2

p Z/Z24- s( 29.14)

Taking into account (29.4)

m2  p nŽPak m (29.15)
p .2

With uniformly precise measurements

22
my ik (29.16)

in

The ratio of the values Plk and P2k in photographic obser-

vations does not exceed 2 in the case when an AES at an altitude

of H - 1000 km is observed from one point at its zenith, and

from another point at the minimum elevation above the horizon

(z = 70.). In all remaining cases, as well as when the altitude

of the AES increases, this ratio will tend toward unity.

Substitution of the values Pik in Expression (29.16) for

the average distance from the points to the AES position, Pcpk'

even with ithe indicated maximum difference of values, Pik changes

the result by 10%. In most cases, this substitution hardly

changes the result. Therefore, finally

mp ICPVII3 (29.17)
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As when determining the error in the position of the synchro- /126

nization plane, we are interested in the deviation of the hyper-

boloid surface from the point through which the latter should

pass, for measured differences in distances. This deviation is

caused by the error in calculating the difference in distances,

corresponding to this surface. To solve this problem, the surface

of the hyperboloid near the observation point may be approximated

with a sufficient degree of approximation by the surface of an

asymptotic cone with a vertex in the center of the celestial

chord.

The canonical equation of the hyperboloid makes it possible

to derive an expression for angle i' between the real axis of the

hyperboloid (the direction of the celestial chord) and the genera-

trix of the asymptotic cone (see Figure 42).

V'=arctg /-.---t. (29.18)

Linear displacement of the surface of the cone A from posi-
p

tion of the point, separated from the vertex of the cone by dis-

tance Pcp' due to a variation of the value of angle p', will be

AP= pepdpt. (29.19)

Having differentiated Expression (29.18) with respect to Ap,

having substituted the result obtained into (29.19) and converting

to. the mean square errors, we obtain an approximate formula for

the error in the position of the hyperboloid, which causes an

error in the measurement of the distance differences. This error

near the point may be considered the error in the position of the

plane, tangent to the generatrix of the asymptotic cone
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2 (29.20)m = Pp d2Ap2 ap. (29.20)

Errors in the Chord Elements

During construction and analysis of the accuracy of space

triangulation, the figures and networks, formed directly by the

chords between the observation points, may be considered. However,

the chords and elements which characterize them are complex func-

tions of the measurement results and are obtained in turn from

the elementary figures, containing - besides the two points -

the ends of the chord, the required AES positions.

As mentioned in Section 16, the direction of the chord is

calculated as a result of the intersection of two planes, each of

which is formed by photographic observations of a single AES

position from two points - the ends of the chord. Thus, the

elementary figure for calculating the direction of the chord con-

tains two pairs of directions from the points to the AES (four

pairs of measured values) (Figure 43).

The error in the direction of the

chord will be calculated in a manner simi-

- kx . lar to the error in the direction from

/. .- " the point to the AES position (29.3) by

the ratio of the displacement of the chord

end mH to its length D:

MB =-= mn', + m2 cos -1 m (29.21)

Figure 43. Displacement of the chord end in a /127

plane, perpendicular to the chord direc-

tion (mH), is caused by the errors in the position of the synchro-

nization planes, located in the same plane, intersection of which
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determines the direction of the chord. Consequently, to find the

value of chord displacement, the well-known formula for the error

in the position of the apex of angular intersection in a plane

may be used

in2 * nz2'm-Pi -P2
'-s-'h2Y (29.22)

with consideration of (29.15)

2 2

P( 2L p(29.23)
2 Sin2 i;

From Expression (29.23), we obtain the formula for the error

in the direction of the chord

2 2

E, "' ik (29.24)
2 i-1 k=-1

2D2 sin2

Displacement of the direction of the chord due to its error

in uniformly precise measurements will be

2 2

n,, =: -= ,, o n (29.25)
2 sbin2Z

and taking into account (29.17)

p2
P k

2 -e2 (29.26)
inH s in2

and the error in the direction of the chord
2

Se PCpk
DSil (2927)nl)j D_ II I, (29.27)
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In the latter case Pcp may be

. ./~ expressed by the angle of intersec-

. / / tion pk for an AES (see Figure 44)

- / l '~ Pcp--- --. (29.28)
J-2 - 2 sin -.2
/2

From (29.27), taking into
Figure 44. account (29.28), we may obtain

2 
-- (29.29)

2 sine A sin'-' _ c

This same expression may be obtained by inversion of the /128

matrix of normal equations, which are formed in the figure for

calculating the chord direction.

Two synchronization planes, formed by observations of two

satellite positions kl and k2 from two points J' and J2, are

shown in Figure 44.

Let us select a system of three-dimensional rectangular

Descartes coordinates such that the OY-axis is parallel to the

chord J: J2, and the ZOY plane equally divides the two-sided angle

X, formed by the synchronization planes.

Let us write the equations of the two synchronization planes

(k = 1, 2)

Fk = Akcos A cos'( 4- Bksin A cos (29. 130)
( 29.30 )'
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Taking the fact into account that in the assumed coordinate

system, the angles which characterize the direction of the chord,

are A = 90° and 4 = 0, we obtain from (29.30) the error equations:

- Ak dA --- Ck d(+ l-k -- k. weight Pk (29.31)

Each of the two equations (29.31) is a function of four

measured values; therefore, their weights are calculated by the

formula I OE )2 ( 0F )2 ( V k )2 (/- rF k 2
PI.s=J o: .......... ' k-o'J'h/) I lw^) dj

PVj, h P6j k Pih Ptj(h (29.32)

Let us set yj 1 = y and 6j 1 = 6; then

¥2 = 3600°--,; j, 2 0--lS °--; Yj22, =180° -F 11 ̀nj, 2=6i.t=.j22-=6.

According to Expressions (29.31) and (29.32) and taking

into account the values of the angles, the matrices of coeffici-

ents K and of weights P of the correction equations assume the

form

K.-[ 2 tg6siny ' sin2¥
-- 2 tg o sin y -- sin 2V (29.33)

cos4 6 0
P 2 (i,1;- 2 si12-j - COS2sa) co,4 6 (29.34)

0 2 (sii,2 y sin 2 6 + cos2 )

Let us compile the matrix of coefficients of normal equations

N=KTPK
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and, having transformed it, we obtain the matrix of the weight

coefficients:

' sin 2y sin2 6+ cos2  0
Q= si112 si n2 26 sin 2 sin28'o 1 cos2 . (29.35)

0 . sin 22ycos 4 6

Taking into account the relations

D . D'__XX
· inD wCo osy a tgndLsi si and in =cos '-cos--Silly 2Cos 6 ,2Pcos 6 2 2

we transform the matrix (29.35) /129

0I 0

Q 4 AcO'
s 2 

-i- SiIt -'- -,-

2 si2 (29.36)
0

Directly from (29.36), introducing the error of unit weight

p, we obtain expressions for the errors in calculating angles

A cos 0 and i, as well as those for the total error in the direc-
tion of the chord mB

mACOS C.) -. ... P' _ . .. ,

2 cos -: sin-

2 2)

2 2 (29.37)

m - --'

sinl sin--
2

Knowing that p = mB//v, we obtain the same expression (29.29).

When photographic observations are combined with measured

distances, the elementary figure for calculation of the chord

base (assuming that the chord direction has already been calcu-

lated) should contain the directions from the observation points
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to one AES position and the measured distance from one of the

observation points to this same AES position (see Figure 16,

where angles 0 are replaced by p).

Differentiating the expression for chord base

sin ((P d!- qJ)j
D qi i i (29.38)

with respect to P:ik, we obtain

Pd +ctgdpdj Pi k. (29.39)
· Pi..kq-c~gd Pik sill qph

When photographic observations are combined with measurement

of the differences in distances from an observation point to two

AES positions, the elementary figure for calculating the chord

base should contain, besides the directions from two observation

points - the ends of the chord - to two AES positions, and one

difference in distances, measured from one of the observation

points, to these AES positions (see Figure 16).

Differentiating the expression for chord base

· Sil (criz'- q'i ) sin(q -'" qti)
D ==- A~~~~~~t sin ~ ~ 1 q'i' i T ~-J-oa.sn 2 sillqi-iq1S Ap ~il l sill ((Sil -- Sill 8 gi - q u'jA) ' ( 29.40)

we will have

-D ,p . .. pi' n clg %,, l7qsn -- ,o12 ctt go: d%2 -',.

i_, P, d%_ . (29.41)+ si,,qa, di si-- d%,
. Si[I (itsill (Pk I]
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A value appeared in Formulas (29.39) and (29.41), which we /130

did not consider previously, the error in the angle between the

directions toward the AES - my. Since the directions toward the

AES position are crossed due to errors, the angle between them is

formed only after they become coplanar, i.e., one of them will be

displaced parallel to itself by the value of the shortest distance

between the directions.

Assuming that the error in the angle will be equal to the

difference in the projections of direction errors on the plane

d )2=( i ' ) - I) (29.42)

and convertingtomean square errors, taking into account (29.13),

we obtain the expression for the error in the angle between

directions

n, =- M2
2 2 '

(29.43)

or with equally precise measurements

M n (29.44)

The result should not be unexpected, since the error in angle

m~ will be affected by only those components of the errors in the

topocentric coordinates y and 6, which are located in the plane

of the angle itself.

Formula (29.43) is general. An expression may be easily

obtained from it for the error in the angle formed by the direc-

tion toward the AES of a chord and two chords.
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Converting to the mean square errors in (29.39) and using

(29.44) for m and my , we obtain for the error in the chord

base, which depends on the error in the angular measurements and

the measurements of distances

2 D21,12 D2m2 = Ft ~,,p it~ ~i ,~k X
m = ; pit'.2 2 2 (29.45)

X (co s2 (fk 
__, ) 2 P k! ']

Converting in a similar manner to the mean square errors in

(29.41), and taking into account Expressions (29.44) for the

error in angles p, we obtain the expression for the error in the

chord base and, consequently, the error in the position of the

plane normal to the chord, as a function of the errors in the

angular measurements and measurements of the difference in

distances

m2  2 D2 2 D2 r 2 k COS fk -- Pi'k

m::: -As2 " t i T .7.0hie sins qkl ( 9
P 2Ap 1  [ jl (e

L h(29.46)
2 2 1

l- M ( sit¢2k · '

30. Estimation of the Accuracy of Elementary Figures /131

The Error in the Vertex of Three-Dimensional Angular Intersection

The directions from two points to the vertex of three-

dimensional angular intersection, as already mentioned previously,

do not intersect in the general case due to errors and are

crossed. The distance of the trace of each direction in the

plane, normal to it and passing through the vertex, from the

intersection plane will be equal to ITHI sin a, where AH is the
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shift in direction from the vertex

W pand a is the angle formed by vector

AH with the intersection plane

/ /~ ,(Figure 45).

Intersection of the directions

will be possible after their reduc-

tion in the intersection plane,

, - separated from the point to be

, .calculated by the value obtained

Figure 45. as the mean weight of the dis-
placements of both directions.

The mean square value of this value will be

2 
f

2 
*(30.1)m"= ~2 \","L

The projections of the direction displacements on the inter-

section plane will be equal to AHi cos a, and AH2 cos a2 , and

the projections of the directions will intersect at the inter-

section angle cp. The point of intersections of the direction

projections will then be separated from the projection of the

true position of the vertex on this plane by a value which in

essence is the error in the angular intersection in the plane.

Therefore, we can write

(30.2)

The error in the position of the intersection vertex will

be calculated by the expression

M2 - "-J M !- m" 7 -2 ,',,+ ' si,,* ~ ]'
if Hg? (30.3)
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and with equally precise measurements

Ill2 
- m ·

4 si. T-( p (30.4)

Taking into account that disregard of the value 1/4 in the

parentheses of Expression (30.4) will alter the value of the

error (reduce it) by a total of 10% in the maximum case (at p =

w/2), for simplicity we may assume

i- sill (30.5)

The formula for the error in the position of the vertex of /132

three-dimensional angular intersection (Expressions 30.3 - 30.5)

is applicable when calculating the AES position by the directions

toward it from two observation points, or calculating the position

of the point by the directions from it toward two known AES

positions. In this case, mH is calculated by Formula (29.4) and

with equally precise measurements.

M}=--7-|[t~''-? : h- Aj,,-,- r,, ) (30.6); = , o ' .. -. ,, · --5 i- -,'

This expression may also be obtained directly by inversion

of the matrix of normal equations, formed from measurements of

the given figure.

Let angles y and 6, which characterize the topocentric direc-

tions toward the satellite position k, be measured from observa-

tion points J3 and J2 (Figure 46). Assuming that pY cos 6 =

pS = 1, we write the equations for the errors in this construction

[VVl cos6, vo,6; vv' cOS,;

V]Tt=K [dle; dy,; dzkl- 1 (30.7)

200



k

2 f

Figure 46.

(subscript 1 corresponds to the

observations from point J1, and

subscript 2 - from point J2).

Let us assume that the chord

J1J2 is parallel to the coordinate
line oy', and the synchronization

plane JikJ2 is parallel to the

coordinate plane z'oy'.

In the selected coordinate system, the matrix of coefficients

of the equations for the errors in the measured values assumes the

form

- I
Pi

0

1
P2

0

0

sin 6l
Pi

0

sin 62
P2

0

cos 61
P1

0

COS 62

P2 - -

(30.8)

Matrix (30.8) corresponds to the matrix of normal equations

( l+ p-) ,o .o'+ =, ) (-i -)(i 2CS° i Icsm 09
N= Sin2 6 sl sin 62 cos sin 61 cos 6)

P- . (30.9)
0 (sink Cos62. sinu cosul) /cos ,o6·

where p1 and P2 are the distances from the observation points

Jz and J2, respectively, to the satellite position k..

By inverting matrix N, we obtain the matrix of the weight

coefficients
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'J--'~-1-p o 0Q 0 0
p1- 2

Q, =C0S0
2 6

j pt C5- 
2 '5. 2 p2 Si l 6,2 cos 62 -- O sin 6] co: 6

Q) - 2 - - -_ - j - -

sin 2q; --n-(30.10)
2~ 2 -,ipsi 61'.(S tf, i 2 62pi Fs2illi0. C.(S- (5 2 ,R~6C)qJ I 1 p" El:)2 6.

sj- .. . sire- '2

where 9 is the angle of intersection of the directions for the

satellite.

Let us introduce the error in unit weight p = my cos =

m = m /, and from (30.10) we obtain the expression for the

square of the error in the satellite position:

PtJ(4 .- P~+Pin2q) i.e., Expression (30.6)

Expression (30.6) is applicable for an analysis of the

accuracy of the position of the point, calculated at the inter-

section of the chord directions, which connect it to two other

points. In this case, the errors in the directions m6 in Formula

(30.6) are replaced by the errors in the directions of chords mB,

and the distances to the AES positions Pjk - by the chord

lengths Dij.

The Error in the Position of the Point Where the

Direction Intersects the Plane

Geometric interpretation of the effect of errors in the

direction and plane on the error in the position of the point of

their intersection is presented in Figure 47.
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From Figure 47 we have

A' 2 A+b 2 -I(- V d)2; (30.11)

but
__ /

b = AH cos a,

C = a cosec P,
(30.12)

Figure 47. a = AHsin a,

d = A ctg ',

where 4 is the angle of intersection of the direction with the
plane.

Having substituted the values a, b, c, and d from (30.12) /134

into (30.11) and converting to the mean square errors, taking

into account Formula (29.11), we obtain the expression of the

mean square error at the point of intersection of the direction

with the plane

1112 = _%~__{ if
SI2jA. -in 2- (30.13)

The formula for the error in the point of intersection of

the direction with the plane may be used for a priori analysis

of accuracy of a rather large number of elementary figures.

Formula (30.13) may be used in photographic observations to

estimate the accuracy of the position of the point, calculated by

intersection of the chord direction, connecting it to one start-

ing point, with the synchronization plane passing through the

calculated and second starting point.
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In this case mH is calculated by Expression (29.26), and

mp- by Expression (29.16) and

(30.14)

The expression for the error in the point of intersection

of the direction of the chord with the synchronization plane may

be obtained with the aid of the inversion matrix.

Let two AES positions be observed from points i2 and J
(Figure 48), as a result of which the direction of the chord i2J

(angles A and 4) is calculated by intersection of the two synchro-

nization planes. Moreover, a third satellite position k3 was

observed from points i2 and J. The position of point J (il and

i2 are the starting points) is calculated at the intersection of

chord i2J with the synchronization plane ijk3J.

Figure 48.

Let us select a coordinate

system such that chord i2J is

parallel to the coordinate plane

z'ox', chord ilJ is parallel to

coordinate line oy', and the

synchronization plane ilk3j is

parallel to the coordinate plane

xtoy'.

Let us write the equation for the synchronization plane

ilk3J in the form

F- A3 Axij-+B3 Ayii-C 3 Azi, - ( 3 .1
(30.15)
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Equation (30.15) corresponds to the correction equation in
the form

A3 dx,- B3 dyi+C 3 dzi+W 3=3 , weight P3. (30.16)

where dx, dy, and dz are the corrections to the approximate coor-
dinates of point j; p3 is the weight calculated by Formula (29.32),

replacing the subscripts k by 3 and Ji by il.

The correction equations for angles A and D, which character-

ize the direction of the chord i2j, have the form

acos() dzx+ bcos () dy-V IACUS= COSq; weight PACOS (1

(30.17)
cdx- ddy+edz. I- q),=%; weight P,.

In the assumed coordinate system, the coefficients and weight /135
of Equation (30.16), as well as the coefficients of Equations

(30.17), assume the values

A =O; B--O;

C- sin/ ..... y.ni;P )= sinf,;

2 2~,i cos' '- ( 30.18)
t sin (l)

= O; b) ....... c =-..I...;

cos ¢I)
d°=; e ....-Di di

By introducing the weights of measurements P = pY cos =

1/U2 = 1 and using the first two expressions of (29.37), we have

o,,= Cos( W sin-' (30.19)

P,( = 4 sinl-  sin2 --.
2
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Finally, the matrices of the equations for the errors K and

weights P for the construction considered assume the form

0
o

. K --
Sill (1)

Di

I-- t

2D?2 cos2 -.
2

o -- Sin '3-

If - 0

- ii I

cos (I)

D2i -

0

0 4 COS2 -Sin- -Y-

'0 0

0

0

4 Sin2 A' ·in3 , q34 - sin' - -

Inverting matrix KT PK, we have

Di,,

2 sin2 q'
2

0

Do -

-D i3 ctg (1'

2 siln2 -
2

-D, I etg tD

2 si 112-q-'-2

0

D3. D, j cig
2 

tj)

4sinl -u- .' - .2s-

From (30.22) we obtain the expression for the square of. the /136

error in calculating the position of point J

j12 t F 2, -- t t_ - +
) c2ijI2 IfS Sj12l l siO2 t2 Sin'2 -sin2-)

+- 2 2

+ 'P 24sin2- cLs 2  s 2 41' J
2 -2- s

(30.23)

(30.20)

(30.21)

(30.22)
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where 4 is the angle formed by chord i2J with plane ilk3 J.

The error in the AES position - with synchronous calculation

of the direction to it from one observation point and declination

from another point, or the error in the observation position in

a calculation of the direction from it toward one known AES posi-

tion and declination of another point - may also be calculated

by Formula (30.13). In this case, the error in the position of

the plane should be calculated by Expression (29.6). The error

in the AES position in this case will be

i2 J_ \

3~=--- p,~+ s '/'(30.24)

When optical measurements are combined with Doppler measure-

ments, the elementary figure for calculation of the position of

the observation point in the direction toward one known AES

position and the difference in distances to two known AES posi-

tions may also be regarded as intersection of the direction with

the plane. In this figure, the surface of the asymptotic cone

of the hyperboloid, corresponding to the measured difference in

distances, may be regarded as the plane, tangent to the generatrix

of the cone, near the point. The error in the position of the

point may then be found from Formula (30.15), which in the given

case assumes the form

~1~= t ~'0'Pk., m..
isi--n2, ii.- -~,.. ~P~,.~ + (1 + sin2 a,) p,,f] (30.25)1. k( 30. 25 )

When the direction from the point is measured at one of the

two AES positions, to which the distance differences were calcu-

lated, we can use the value of the angle c between the measured
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directions to the AES and the direction to the center of the

celestial chord in (30.25) instead of angle . j

Let us consider another method of deriving the formula for

the error in the position of the point from the measured differ-

ence in distances to two unknown AES positions and observation of

y and 6 from it to a single AES position.

Let us select a coordinate system such that plane klJk 2 is

parallel to plane z'oy', and direction kjk 2 is parallel to the

coordinate axis oy' (Figure 49).

Z Let us consider the problem of

ok, calculating the position of point J,
x-....assuming that the position of points

X ki and k2 is known. The matrix of

/ coefficients of the equations for the

errors in measured values (y cos 6)jk2

Figure 49. 6jk2 and ApJ1 2 in the given construc-

tion has the form (subscript J is

ommitted for simplicity)

K = sin 62 CS_ (30.26)
Po 9ra P%

0 Cos &-F cos 61 sin 62-- sin 61

As in all preceding constructions, let us assume that p6 =

PT cos 6 = 1. Then

it
2  7 2 (02

A iAP -- ]2(-(S 2- ( 30*27)
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where K is the ratio of the errors in the angular and linear

measurements; and cp is the angle of intersection of directions

Jki and Jk2.

Accordingly, the weight matrix assumes the form

'0. -0 0 -
P= 0 1 0 .

O 0 12

(30.28)

Taking into account the equalities:

cos 8.2--- cos 8 =- cos 62 ('1-cos q) d-sin r sin 62=- m,

sin 2 -sin 61 = sin 62 ( -cos p) )-- Sill p COS 6-2 = I,
(30.29)

we compile the matrix of coefficients of the normal equations

Ar = K TpK (30.30)

and, transforming it, we obtain the matrix of weight coefficients

p2 0
cos 2 62 I-I _ fln2p0 '
12 (4 -- COS q))2

sin &2'cos 62 + 2lm,npo
0 - 12 (l -- COS ()2

0 -

sin 62 cos 62-]- 12 7n! pi
L2 (1--cos q) 2

sin2- 82-+ lnz2f)2
l2 (I-COS (p)2 -

Introducing the error of unit weight p, from matrix (30.31),

we obtain the expression for the square of the error in calcu-

lating the position of a point in the given construction

(30.32)

Taking into account Formula (30.27), Expression (30.32)

is transformed to the form
/ 4 4 - r r,

i llp (--1- I -+Cos)

(30.31)

(30.33)
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To estimate the accuracy of all

types of three-dimensional linear-

angular intersection, it is expedient

/~ / 9 \ to use angle c between the direction

/ and the line whose length is calculated

(Figure 50), instead of angle i between

Figure 50. the direction and the plane in (30.13).

In this case in Formulas (30.13), sin i is replaced by cos p /138

and Formula (30.13) assumes the form

2 = t _2 _ (30.34)

Formula (30.34) is applicable for estimation of the accuracy:

(1) of the figure for calculation of the AES position by the

direction from one point and the distance from another observation

point; (2) of the figure for calculating the position of the

observation point by the direction from it to one known AES

position, and the distance to another point.

In the latter case, mp is calculated from Expression (29.7)

and the error in the position of the point will be

p2
is =- a 2 ; (30 35).M?=--*m~ cos~w .'

Formula (30.35) may be obtained in a somewhat different form.

If angles a, and 6 1 in the construction shown in Figure 46 are

measured from point ji, and the distance P2 is measured from

point j2 to the satellite position k, then in the assumed coor-

dinate system the matrices of coefficients of the equations for

errors K and weights P assume the form
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- o 0 -

0 sin 6 Cos 61
Pi Pi

0 -cos62 sin62- (30.36)

p= 0 I 0.
-0 1 0.

I .0 -~[

Inverting the matrix of normal equations

N- KTPK=
~1 0O. 0

= sin2M X2 CoS 2  o X sin 2cos 62 Cs n 1 cos 6 (30.37)
2 sin '1 -o+ s ,6

PI q P IV- xsi62CoS62_, sin6 1jcos61  Cos2 61 .2 sin2 6II PIIf 2
we obtain the matrix of coefficients, from which it follows that

the error in calculating the position of the point (if the AES

positions are known) or of the satellite (if the positions of

the points are known) is equal to:

A2.l ( p- *-cos ) (30.38)

where K is the error ratio of the angular and linear measurements.

Formula (30.34) is also applicable for analysis of the accur-/139

acy of the AES position, calculated by the direction to it from

one point and by the difference in distances to it and another

known AES position from another point. In the latter case, mp

is calculated by Expression (29.11) and the error in the AES

position is
22 m -d2nm 1 MI A-.. IS

in(30.3' Ap )
COSZ Y (30.39)
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If the direction and distance are calculated from one

starting point (polar intersection), angle 9 vanishes (I = 90°),

and Formula (30.34) assumes the form

M22=n2+ m2  (30.40)

Expression (30.40) is used for estimating the accuracy of

the AES position or the observation point by the direction meas-

ured from the point and by the distance to the AES position.

In this case the error formula assumes the form

A1,= p, ,m+. (30.41)

For this same case, from Expression (30.38) we obtain

pit + (30.42)

and, when the relative errors in measurement of the distance and

angular values are equal,

Jf=j pp15. (30.43)

When calculating the AES position by the direction to it and

by the difference in distances to it and another (known) AES

position from the same point, the error formula for the AES

position, on the basis of (30.39) will be

+ r-1-m.. (30.44)
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When calculating the position of the point by the direction

and base of the chord, the error formula for the position of the

point will be

~1, = ,n~D2 ~ niD,
- (30.45)

in which the expression for mB is taken from (29.27) or (29.28),

and mD is calculated by Expression (29 .45) when measuring the

distance to the AES, or by (29.46) when measuring the difference

in distances.

Formula (30.13) may be used to estimate the accuracy of the

position of the point of intersection of three planes, if this

figure is considered as the intersection of one of three planes

with the line of intersection of two others. Then, for inter-

section of three synchronization planes, each passing through

the calculated and one of the starting points,the error in the

position of the point is described by the expression

2

PoI2 o' o

2- F,'2- Psin - (30.46)i ' P1.
2 

,. pi'. . 2- sin4 X
- -j-..- 2s4-i---2in- i '  sin2? I2

.42M V3

where A is the angle between the synchronization planes, formed

by AES positions ki and k2, and *3 is the angle between the line

of intersection of these planes and the synchronization plane,

formed by the third AES position (k3).

Cases are possible when, due to the absence of precise time

at the observation point, only the declinations of the three

known AES positions, rather than the directions from it, will be

calculated. Then, taking into account (29.6), the expression for

the error in the position of the point will assume the form
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Pik, , @ik[2 2 * + (30)47)
'j" [fsi±n2 ,h + sin22 *1-1

Similarly, when calculating the position of the point by

three differences in distances, calculated from this point to

three pairs of known AES positions, taking into account Expression

(29.20) and assuming the relative errors in the differences in

distances to be equal, we obtain

~2- 2 YL > d2 - Ap2 2 I - ( + 2p2)] (30.48)

21i,= -ap- 2 sin2 i1 nXd2, O-A - K.
2 L sin 2X ~ sin2i '

where K is the number of the pair of AES positions to which Ap is

measured.

In the latter two cases, X is the angle between two planes,
tangent to the generatrix of two conical surfaces, and * is the
angle between the line of intersection of these planes (or tangent

to the line of intersection of the conical surfaces near the point

to be calculated) and a third plane, tangent to the generatrix of

the third conical surface.

The same Formula (30.13)1is applicable for analysis of the

accuracy of three-dimensional linear intersection in cases when

the point or the AES position is calculated by the three measured

distances or when the AES position is calculated by the three

lengths of the focal radii.

If we assume that the relative errors in-measurement of dis-

tances are equal, Formula (30.13) will assume the form
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122+ F f, i21- P 1M~ +n, + 2 s iI n T1ql2 _
IvI: p2 ±P L2in~qo, 1-]__P 2 + sinri j' (30.49)

where 91 2 is the angle between two lines by which the distances /L'.

are measured; and *s is the angle formed by the third line with

the plane passing through the first two lines.

When using the focal radii, mp are calculated by Formula

(29.11).

The Error in the Vertex of Instersection of Three Planes

As was shown, intersection of three planes may be regarded

as intersection of one of the planes with the direction of the

line of intersection of two others, and for estimating the accur-

acy of calculating the position of the point of intersection,

Formula (30.46) may be used.

However, it is expedient to consider another derivation of

the formula for the error in the point of intersection of the

three planes.

The coordinates of the intersection point are found from

solution of the system of equations for three planes

A1 X .- jB 1 Y-I C1 Z -. D = 0

A2X- B2Y-'-C2Z-.=--10 (30 50)

A3X- -]33Y '-" C3Z -- 13 .- 0

or after transfer of the origin to the point to be determined and

normalization of the coefficients and the free terms of equations

AiX'I -BI- Y' Z- CiZ'- 0 d, =: 0
A2X'+-132Y'+C2Z'---d---0 (30.51)
A.;X' " ' '-;- C;Z'-d3 -O.
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In Formulas (30.51) the normalized free term is the error in

construction of the given plane. Its mean square value is calcu-

lated by Formula (29.16) (for mp). In matrix form, Expressions
p

(30.51) are written

AX-d, (30.52)

Hence,

X:==A-Id (30.53)

and, according to (27.1)

'M' =(A-') M2 (A-,)T . (30.54)

In expanded form (30.54) is written

[L1 L 2 L3  0 0 i J 111 IN1

[.- All I112 3. 0 m2  0 I '2 Al: (30.55)
Ar, Ar2 3 0 m-I, 3 S JVS

where mp is the mean square error in the construction of the /142

given plane; Li, Mi, and Ni are the direction cosines of the lines

of intersection of planes Q2 and Qs, Q, and Qs, Q1 and Q2 respec-

tively; and A is the determinant of system (30.51).

Let us expand A with respect to the elements of the first

row

B\---Ai~2; c | + C; . I A 2 ='

3B C3 C A3 A; B;

.. A.L-. B.. -- ALBl,+,B.', CLA'r., (30.56)=AILl -+ Bi3I1i-i'- CiA 1 sin "'i-jx, -- vl,

where X1 is the normalizing factor

L' l+AIl(0- 057)
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V is the angle between plane Q1 and the line of intersection of

the other two planes Q2 and Qs. If the determinant A is expanded

with respect to the elements of the second and third rows,

similarly, we will have

A Si _ =S, ..3 (30.58)

After multiplication of the matrices contained in (30.55),

we obtain the following expressions for the diagonal elements of

matrix M2
X:

n ( 2 7 i 2 7p

2g- AL 2 3 L.; 2 _ +

_ 1 c(30.59)
A2  ~.2 P 2

-
+

m., =-A- 2- (.2 " ,~ - + Pt 37,2 ).

Hence, taking the fact into account that L'i2 +Mhi 2 + N' 2 =
· ' 'i

1, and also Formulas (30.56) and (30.58), we obtain the final

expression for the error in the position of the vertex of inter-

section of the three planes as a function of the measurement

errors and the geometric characteristics of the given intersection

M2 m+mj' ± mst mn , s P --2 P (30.60)m x, +2 m ,. z - r._--2~~I !P 2+ '"___2 _3 W "'-: VI
4-I

Formula (30.60) is used for analysis of the accuracy of the

vertex of several elementary figures which we considered above,

first, for analysis of the accuracy of the position of the obser-

vation point, calculated at the intersection of three synchroni-

zation planes. In this case mp is calculated by Formula (29.16) /143

or (29.17) and the expression for the error in the position of

the point will be
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3

711' - in' ( 3 0. 61 )

Further, Formula (30.60) may be used to estimate the accuracy

of elementary figures which are the intersection of three conical

surfaces considered near the point to be calculated, as planes

tangent to the generatrix of these conical surfaces. Such figures

occur when the position of the point is calculated by the declina-

tions of three known AES positions measured on it or by the dif-

ferences in distances measured from it to three pairs of AES

positions. In the first case mp is calculated by Expression

(29.6), and V is the angle between the direction from the point

to one AES position and the plane passing through the direction

from the point to two other AES positions. In the second case

mp is calculated by Expression (29.20), and * is the angle between

the line connecting the point with the center of the celestial

chord between one pair of AES positions (the difference in dis-

tances to which is measured) and the plane passing through the

lines connecting the point with the center of the celestial chords

of two other pairs of AES positions.

The expression for the error in the position of the point in

the latter case has the form

= ( 2) Si - ) (30. 62)
K=-i

where K is the number of the pair of AES positions.

Formula (30.60) may be used for a priori estimation of the

accuracy of the position of the vertex of all types of three-

dimensional linear intersection in space. Such intersections

include figures which occur upon calculation of the AES position
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by the distances measured to it from three observation points,

upon calculation of the position of the point by the distances

measured from it to three known AES positions, as well as upon

calculation of AES positions by the differences in distances

measured from the observation points to them, and at the same

time - from the lengths of the focal radii of the hyperboloids.

The value of mp in Expression (30.60) in the first two cases

is calculated by Formula (29.7), and in the third case - by

Formula (29.11).

The quantity * in these figures is the angle between one

line whose length is measured and the plane passing through two

other lines (one focal radius and the plane passing through two

other radii).

Thus, for example, the error in calculating the position of

a point by the distances measured from it to three known AES

positions will be calculated by the formula
3 /z

1k - (30.63)

31. The Effect of Errors in the Position of Starting Points /144

The effect of systematic errors in initial data, which cause

a general shift of the entire triangulation or in the presence

of more than one starting point - a general shift, rotation and

an error in the scale of space triangulation is well known.

We have given approximate consideration below to the effect

of random errors in the position of starting points and this

effect on the previously derived formulas for an a priori esti-

mation of the accuracy of the elements and figures of space

triangulation.
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Effect of Errors in Starting Points on Errors in

Triangulation Elements

An error in the position of the point in a three-dimensional

coordinate system may be represented by the expression

M =mx +Inm.. (31.1)

If the components of errors on the coordinate axes are

assumed to be equal, we may assume that, independently of the

direction of the coordinate axes, we have

MA=3mn2. (31.2)

On this basis, the error component of the starting point

position in a direction moving away from this point, and, conse-

quently, the effect of the error in the position of the point at

a distance measured from it, or on the plane passing through this

point, will be

2m2 = i (31.3)
p

The error component of the position of the starting point in

the plane normal to the d.rection passing from the point, and

consequently, the effect of the error on displacement of the direc-

tion passing through the point, will be

2 M~.M (31.4)
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We should especially discuss the effect of errors in the

position of starting points on the errors in space triangulation

elements, obtained as a result of measuring the differences in

distances.

The error in the length of the focal radius depends on the

distance between the observation point and the plane passing

through the center of the celestial chord (1), i.e., on the dis-

placement along one of the coordinate axes. Having differentiated

Expression (29.9) with respect to I and converting to mean square

errors, assuming that m2z = M21/3, we obtain the error in the

length of the focal radius due to the effect of the error in the

position of the point

2z~ d2 ~32 M. (31. 5 )

The characteristic of the hyperboloid is the angle 9' /145

between the surface of the asymptotic cone and the axis of the

hyperboloid (see Figure 42). It is obvious from Formula (29.18)

that angle p' depends on the length of the celestial chord d.

Having differentiated (29.18) with respect to d, substituting

it into (29.19) and converting to mean square errors, assuming

that m2d = 2/3M2k, we obtain the error in the position of the

plane, with which we approximate the asymptotic cone, caused by

the effect of the error in the length of the celestial chord,

2 = 2p- (p2 -3.mp (31.6)
3d2 (d2- A p?)

221



The effect of the errors in AES positions, which are the

foci of the hyperboloid, may also be reflected in rotation of

the axis of the hyperboloid, which imparts an additional displace-

ment to the hyperboloid surface, equal to

mp= 2p. (31.7)p 3d~

The total effect of errors in the AES position on the error in

the position of the hyperboloid will be

2 - 2PC'P 112
m2 = 2pp A

2 ) (31.8)

Moreover, we should remember that, since the vertex of the

cone is not the AES position, but the center of the celestial

chord, the total displacement of the surface will be

mp =( - 2 ) 3 (31.9)

Effect of Errors in Starting Points on Errors in the

Position of the Vertices of Elementary Figures

For the main types of elementary figures considered previ-

ously, the effect of errors in the position of starting points on

the positionof the calculated points may be represented in the

following manner.

For three-dimensional angular intersection

2

3 =+kMi+.,I- Sinq J=3 (-sil') .2(31.10)

or with equally precise initial data

or with equally precise initial data
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2= 2An1 2 .3 Sjfl 2 qp

For intersection of the direction with the plane

/1~ = 'i2 -~ sin2l is

a =2 (l I2 aj3M I j- - 2, - -,

For linear-angular intersection

-! 2)M72 --= ±+ a
COS 2

¢p

or

(31.15)

To calculate the position of the.point by the polar. method.

M2 -= M .

For intersection of three planes or three-dimensional linear

intersection
3

c12- 3- si n2
E-1 (31.17)

or

jM_2 = Al 2i E3 sina2 % '
* i-1 (31.18)
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(31.13)
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Taking into account the dependence of the previously

obtained errors in the elements of space triangulation, construc-

ted by using the measured differences in distances, on the errors

in initial data (31.5) and (31.8), we reduce the formulas of the

total effect of errors in the initial data on the accuracy of the

two main types of elementary figures of such triangulation.

For a figure for calculating the AES position by the direc-

tion to it from one point and the difference in distances to it

and another AES position from another point, we have

A Mr= 3c(2,+) (31.19)h~=3c~ 2 + cos ~ q) +A p2

For a figure for calculating the position of the point by

the difference in distances from it to two known AES positions

and by the direction to the third known AES position, we have

M; = 'E 3 + sin2 _ _ 2p_'
3 Mj,2 p k 2 +sin +d2-Ap2). (31.20)

32. Combining the Formulas for A Priori Estimat!ion of

the Accuracy of the Elements and Elementary

Figures of Space Triangulation

For convenience in using the formulas for a priori estimation

of accuracy, let us reduce them to a single table for a further

analysis.

For illustration, the main figures in Table 1 are represented

by diagrammatic drawings with the following notations:
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E - starting point;

A - calculated point;

O - known AES position;

* calculated AES position;

- direction from the point to the AES position;

*-..* - declination of AES position;

- distance from the point to the AES position;

..,*.- difference in distances from the point to two

AES positions;

-. direction of the chord;

-- |-|-- length of the chord.

In Table 1 the formulas for a priori estimation of the

accuracy of the elements and figures are first presented only for

photographic measurements, then for combinations of photographic

observations and measured distances, and for combinations of

photographic observations and the differences in distances.

33. The Effect of the Number of Measurements on the

Results of A Priori Estimation of the

Accuracy of Space Triangulation Figures

We call the figures containing the minimum number of measure-

ments required to obtain a result - for calculation of the posi-

tion of the point or the value of some space triangulation element

- an elementary figure.
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TABLE 1

Calculated Elements Diagram

32.1 tographic observationsCalculation of Pho
synchronization plane

Calculation of
chord direction

Calculation of the posi-
tion of the point (AES)
of three-dimensional
angular intersection
in space

Calculation of the posi-
tion of the point of
sequential three-dimen-
sional angular inter-
section in space (with
a symmetric figure)

Calculation of the posi-
tion of the point at the
intersection of the
chord directions

32.2

32.3

32.4

32.5

2
mp

2 (Cp + /) +2-i . .t

kz/\j

k,

I'o

D)
O%

No. of
Pcnvr'ni 1 n

Formula

2

Ž PkPk

r m = k-i n1I

D 2 sin' .~, '

With a symmetric figure
9020

m 2 = D-Pi-1 Z n:p = -

±2S 112 (f+ + PI) IIL) ---s (1[(*~ 4+ -2 sin 2) ) , sin+ (P__Pt

2

7 (±+i) [+ 2 (+9 (2 ' ,sj )
I 3 2 + iop1

llli='2~__ ' 3 a 2 a ,
2 (p2+p2) _--2 -2 M-~.2 SiI12

\4sinI p, 2 Sin2 qj 1122- )Sm Pk(f±~2 2

· (~4± ) [ '- . ]Pkm

3 siaC m~- 2

X -si~-- ¢ , 2i n ?l

i ( i sin2 o (~- n/+ 2 )

P k 4 sin q0/m 3y

p,2- 2 . . ,,1k
il"qk + sin2 .p

k

A

it'a- " ' "' --

o'D

gH~

· _VI···__U



TABLE 1 (Continued)

Norof Calculated elements Diagram Formula
formulal

32.6 Calculation- of the AES
position by the direction
from one point and by the
declination from another
pQint

Calculation of the posi-
tion of the point at
intersection of the
chord direction with
the synchronization
plane

Calculation of the posi-
tion of the point by the
declinations of three
known.AES positions

Calculation of the posi-
tion of the point at the
intersection of three
synchronization planes

i2o I9

X1
0 ,

LJJ /
.:.

r~; ,o-kj

fJ°

Combinations of photographic observations with distance measurement
-I

Calculation of chord
length - -/|D= ' 2 sin+ [(cosq V- Pi.) os -. ),k )

}ik Pi

=(I+si1l 23 ) + 2 (1 -ksin :1)) .1I-F312, k 2 s i l: I / i: s s ill -°'-

Al2 = 1 r(4+siri 2 'l) 2j2rB ± 2 Pcpkf + (1±s5i1 1p) JTl± 1

M2 +2p5t si +R1 1,pcm~+~~)/. iey

P1cphnl | (1 Sn

M2- = --

sin2 L .2 3 s
3I3

k51

n~ '/= 5 {1 sj +. s2in~ v3-1 ), .C [l--si n)2

p~ »= sin2 C

sni

fF pr
2 4--2 - A1±M2+~3I- 10 L 2

1 2 J 2-k 3 LSifl2 II

32.7

32.8

32.9

32.10

K)
N'

-:1



TABLE 1 (Continued)
I I A

Calculated elements

32.11

Diagram

Calculation of the posi-
tion of the point (AES)
by the direction and
distance

Calculation of the posi-
tion of the point by the
direction to one known
AES position and the dis-
tance to another position

Calculation of the posi-
tion of the point by the
direction and length of
the chord

Calculation of the posi-
tion of the point by the
distances to three known
AES positions

Formula

J112 m J± = p2-- + ( + 12rn 2 -h)

~'"- = cCos2 q)[ (-l-CoS2q',,
~  

l -- o;:..

.Ap-t--2t2-- tttti 2+ nq l pil+-
+ X 2 pos) 2 3 co3 2 (X1
±' (px q- x o~.~/2 3Q o'- ' q,~M

Ic o l-i4 A j

kz / Ji k°_*- -A j

kkt-.^--

k,

FIJ -- D;B D[ Ibe-|ll

I = j

"1
A12~~ ,, 'tt

i Sil 'l 3 -k) ; Sil :-
k-i k=1

Combinations of photographic observations with measurement of differences in distances

Calculation of chord
length

Calculation of the AES
position by the direc-
tion from one point and
by the difference in
distances from another
point

i/

*o---* k,

i Ok~z

i? .....
"t%

0 / m , nPi m (PikOSPk
DM ni; s ( (2 Sin2 ok k ! t

,- (I +cos2 q) p!i m- d212 MS +

+ [( + .OS2 yj,) Ml + ( A+p2 ) M - \
l3 _ ' - /*/'~

PO
I\.)

No. of
formula

/153

32.12

32.13

32.14

32.15

32.16
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TABLE 1 (Continued)

ormula Calculated elements Diagram FormulaformulaI l
Calculation of the AES
position by the direc-
tion and difference in
distances

Calculation of the posi-
tion of the point by the
difference in distances
to two known AES posi-
tions and by the direction
to the third position

Calculation of the posi-
tion of the point by the
difference in distances
to two known AES positions
and by the direction to
one of them

Calculation of the posi-
tion of the point by the
differences in the dis-
tances to three pairs of
known AES positions.

32.17 .*k,

kOk

A30

k3/ ,'Ato

. .

sol ......... -o 9
kz°""

a- p = p2" m +2(I ( d2 ± +2 2

___2 sin ±2 + 2 3'PI,2 8 d r MS lplSll 2  
P - 3& 112

I [Sin2W 1 3 + ±(4 Sil p..P~ ~~2

=sin2 (p [ P2 4  2--d--.-A2 3 \ _

_ Mi"t d-CA 22 ]I=j Sin(-' .Pk A ± 1)A (d- i ±A .!)
[p2p .7 + ,2 2 3

3

.\ "E '3) (} (d -- Ap2'-) sin= q2r
k.~
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The appearance of excess measurements in the figure should

lead to variation of the previously derived formulas for estima-

tion of accuracy. As we know, excess measurements in all cases

increase the accuracy of the result, but the effect of an in-

crease in the number of measurements may be different.

In order to establish the effect of excess measurements

on the formulas for an a priori estimation of the accuracy of

elementary figures, let us present an expression for the error

in the elementary figures in general form as

M1= z Q1" (33.1)

where mi are the errors in measurements of the elements of the

figures and Qi = l/Pi are the weight coefficients.

Let us consider an increase in the number of measurements

of elements of the figure without variation of its geometric

shape.

If some element of the figure is measured repeatedly,

assuming that there are no systematic errors in the measure-

ments, the error of the calculated measurement may be

M2 =_ t'

i(33.2)
4sJ Ino

where n is the number of measurements; and Me is the error in

single measurement of the element.

If the measurements are equally precise, then

2n_ . (33.3)
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It is more complex to calculate the effect of excess measure-/154

ments, which vary the geometric shape of the elementary figure.

Most of the figures which we considered are intersections,

and their excess measured elements are geometrically interrelated

in different ways. Since consideration of the effect of element

errors on variation of expressions for the errors of elementary

figures is rather complex, we will consider the simplest cases

here.

If the elementary figure for calculation of a chord is con-

sidered as the intersection of two planes, and intersection of

three planes is reduced to intersection of the direction with the

plane, then, along with the figure for the intersection of the

direction with the plane and three-dimensional angular intersection,

all these elementary figures are formed by two elements, and

should contain a term of the following form in the formulas for

a priori analysis of accuracy

j2e = Q(n22 +M2,), (334)
el e( 33.4 )

where Q = l/sin 2* characterizes the geometric relationship

between the measured elements.

An increase in the number of measurements above the two

required to a number n increases the number of angles between

the pairs of measured elements, which becomes equal to the 2 (c2)n
number of combinations, out of n.

To obtain the approximate expression for estimating the

accuracy of such a non-elementary figure, let us use the formula

obtained by Professor K. L. Provorov [44], for the error in

multiple angular intersection

231



n I

,2-; s=- , (33.5)
v sin2 e

]~ me;,m Le

or with equally precise measurements

l2 - (33.6)
2

. sin2

On the basis of Formula (33.5), we find the expression for

estimation of accuracy for some basic space triangulation figures

containing an excess number of measurements.

Error in Chord Direction

Usually, as a result of prolonged observations of space

triangulation from each pair of points - the ends of the chord

- a rather large number of AES positions will be observed synch-

ronously, and the direction of the chord will be calculated at

the intersection of n synchronization planes.

The error in the direction may be represented by the /155

expression

rn
2  

. ..

-, ,fj2 4 (33.7)
n · i

D n aS'i1t' /2ha h, 2

i A m i PcPP' [>P/:a
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In the case when the average distances are similar, and the

synchronization planes corresponding to the AES positions are

uniformly located around the chord within the limits of the maxi-

mum angle between their extreme positions, equal to Q,

2 _ _ _ _ _ _ _ _ _ _ _ _ _

(33.8)
D2N(n-c),si2 CQ

c-i -

We may present one more simple approximation expression for

the error in the chord direction, derived by Lambeck [57] for
uniform distribution of the observed AES positions with respect

to the center of the chord

m2

m s 7a (33-9)

Error in Chord Length

We previously considered the elementary figures for calcula-

tion of chord length, in which the measured linear value was the

distance from one of the points (32.10) or the difference in

distances from one of the points (32.15).

Measurements of the distances and differences in distances

from both points - the chord ends - are essentially possible.

Then, upon measurement of the distances, the error in the

chord length will be calculated by the expression

233



i- 4
2 m+ I ±COS4(fk-FCOS" -, Plk -i o

...2 T/ . COS- --- Pik -

(cos Tfk -[fz P) ( cos ar-- J2~k )-3.0

L ' 'k02

length, derived by Professor I. D. Zhongolovich [20], provided

that the error in the chord direction, obtained from a consider-

able number of observations, is negligible, compared to the errors

in measuring the differences and directions to the AES in the

given figure.

....=. (COS 2 t'--:. q. C_ t.-- - 2 2| (33.11)

Lambeck [58]n presents the followingied expression for the error /156in chord

length, derived by Professor I. D. Zhongolovich [20], provided

that the error in the chord direction, obtained from a consider-
able number of observations., is negligible, compared to the errors

in measuring the differences and directions to the AES in the

given figure.

n,,. : (co,2 qpi ~1- cos.2 qi) .zm--2+",..2 31121)1

Lambeck [58] presents the following expression for the error /156
in chord length (in the notations of Figure 15)

'b2) (A -- B2)

/52- (A i- C -- 2B) " (33.12)

where

A ctg2 t'z sin2 ,3
A sill" S sillt " i -sin2 Pk '

i 114 ji-~,- -simt iS/
3- --ctg2-Pk + sin fi siTa i/ '

C= t - ct. gI - /-Sin 2  o jk 4 pisi ,2 i .si= JTrei "3- j  sin~ j3l sin~ii k '

If the differences in distances from both points - the chord

ends - are measured by the differences in distances from the

point to two AES positions in the figure for calculating the

chord length, the error in chord length will be calculated by

the expression
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2  
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\~*1 
0 i2 COCO (17lA~ ~ ~ ? -l1 y ,2 OZ(l- pk p22 cos2  k .4- Ply

iJ Sin2 (Pk sin 2  (3313)
(33. 13)iil*1

( P12 A p -p )

-t L~.o- , *pi
2 --- ' ~

0 (ok COS (Pk Pr2k )2 P2k COS pk-Plk 2
sin Pk , sin k !

When calculating the length of the chord from several such

figures or elementary figures, its error may be calculated accor-

ding to Expression (33.2).

Error in Three-Dimensional Angular Intersection

When calculating the position of the point, the formula

for the error in the vertex of three-dimensional angular inter-

section n of the directions will have the form

IjpM, =-- l n1.4 (33.14)
E Si;,~ ( j-k ,j

A similar formula may be used to calculate the position of

the point by the directions n of the chords with approximate

equality of Dij.

If the point is calculated at the intersection of equally

precise chord directions, located uniformly around the point and

having an approximately identical length, then

M...11;.- -7,=TtC- ---~ [ .... man.
2c~t

(,, - - C) si,,i - 2 (C5 33 5)
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Error in Intersection of the Direction with the Plane

If the error in the vertex of the elementary figure is

represented by Expression (30.13) when n' directions and n"

planes are measured to estimate the accuracy of the figure, we

may use the approximate formula

nn'12j
111 (33.16)

11 11 _.,2
2 It - 5 sin2A

ui , g,+ n j 2pp

i2k 'C2 2 -

With equally precise measurements

M2=· " (2") M, - (33.17)
-2n 2M mP Sin2 'q+ 4mH I sjn

2 
(p + m sin

2 A.

For all forms of linear-angular intersection

m

n - -:-- -.rn
2l In; ,H+n9 (33.18)

> COS2- h?
1

When calculating the position of the point by the polar

method, we have

=,?-- , · P . (33.19)

Finally, for three-dimensional linear intersection in space,

we will have
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-2 icp. 2- (33.20)
,<,2

2S111f 2 
q- si* 1q

1 Le2 - 71i2

and with equally precise measurements

C
2

(__- 2) ( r-1-n i in2 l) - 12 2 (33.21)
1112 - = ' - l-_, si -

( ¢~-2) l )l _ _ siu2 q, 2
(n--2) sin 2 (. sj1 2 ,,

Error in the Vertex of Intersection of the Planes /158

Because of the complexity of the joint geometric relation-
ships of the intersecting planes at n > 3, we can recommend that
analysis of accuracy of multiple intersection of planes or

multiple linear intersection be carried out by using the expres-

sion for the error in the arithmetic mean of the results of
several elementary figures, i.e.,

I12- .......... i~713
>_ _I- (33.22)

34. A Priori Estimation of the Accuracy of Coordinate
Transfer in a Space Triangulation Series

Let us call a set of points, related by synchronous observa-
tions of AES positions such that we can sequentially calculate
the positions of the entire set of points - using a minimum of

one or two points at the beginning of the series as the starting
points - a space triangulation series.
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The error in the position of the point of a space triangulation

series may be represented in the form of two terms, the first of

which contains the effect of measurement errors, to calculate the

given point, and the second term of which contains the effect of

errors in the position of points, which are the starting points

for calculating this point. The error in the position of the nth

point of the series may then be calculated by the recursion

relation
-11 =M -+ K2 (811st 4 J 12),

X (34.1)

where M 0 is the error in the position of the point, caused by

observation errors in the given figure, and K is the coefficient

of the effect of errors in the position of points 1, 2, ..., (n - 1)

which are the starting points for calculation of the given point.

The nature of accumulation of the effect of measurement

errors on the error in the position of the point of the series

depends on the sequence of calculating the points.

Space triangulation series for three groups may be calculated

as a function of this.

We include in the first group a series of sequential figures

when the starting point for each new point of the series is the

one preceding (Figure 51).

The error in the position of the jth point of this series is /159

calculated by the formula

,.- (34.2)
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Figure 52.

J. J2

We relate the series of sequen-

tial elementary figures to the second

group, when each new point is calcu-

lated from the two preceding points

(Figure 52).

The error in the position of the

Jth point of the given series may be

calculated by the formula

i

MjS =.s E. aI-IK
i=! (3 4.3 )

where the coefficients aj are selected

from the table, similar to Pasqual's

triangle:

Figure 53.

j --. 1

2
3

: 4

5

6

7

1
1 1

1 2 1
1 2 3 1
1 2 4 4 1

/
1 2 4 7 5 1

1 2 4 8 11 6 1

Here each element is equal to the sum of two elements: one

of them is located above the calculated element, and the second

is located to the left between them. For example, in the last

row, 11 = 4 + 7.

Finally, we relate a series of sequential pairs of elemen-

tary figures in which the initial points for each new pair of

points is the preceding pair of points (Figure 53) to the third

group.
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The error in the position of points of this series may be

calculated by the formula
J

= J ' (34.4)

similar to Formula (34.2), if J is not the number of the point,

but the number of the pair of points.

35. Errors in the Position of Points in Continuous /160

Space Triangulation Networks

The formulas for a priori estimation of accuracy, obtained

above, are valid for individual isolated space triangulation fig-

ures. Moreover, an a priori estimation of the accuracy of con-

tinuous space triangulation networks is of interest, because in

many existing designs, both foreign and SoViet [18], the develop-

ment of space triangulation is in the form of a continuous net-

work, distributed over the entire surface of the globe or a con-

siderable part of it. It is clear that estimates of the errors

for individual figures may not be simply generalized to systems

of such figures of considerable length.

As we know, the accuracy of the elements of equated geodetic

networks is established with the aid of weight coefficients,

i.e., by the elements of the inversion matrix of a system of

normal equations. Moreover, it is unnecessary to calculate the

weight coefficients with the total accuracy possible for pur-

poses of a priori estimation of accuracy. In many cases, it is

sufficient to obtain the numerical characteristics with an accur-

acy of 20 - 30%* in order to calculate the characteristics of

error distribution in the networks.

*This is equivalent to the requirement that the error in
the analysis does not exceed 1/5 or 1/3 of the total error.
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Approximate values of the elements of the inversion matrix

may be obtained by a method known in the literature as the per-

turbation method. It is as follows.

It is simpler to invert diagonal matrices. Let us give the

matrix of coefficients of normal equations in the form of the

sum of two matrices

B=P sC, (35.1)

where P is a diagonal matrix, comprised of the quadratic coef-

ficients of normal equations; and e is some factor, different

from zero and subject to the condition e S 1.

Thus, for matrices P and C, we will have

-bO 2 ... °

0 0 . bk^(35.2)

0 b12 ... blk-

C=[21 °2 b2k]

C/., 0' . .. V/.......
bkl b72 0

Let us now expand the precise inversion matrix B- 1 into a /161

power series of

B-1x Q Qo0- eQ1 -- eQ 2 +--eQ3 a-- (35.3)

where

- t-

Qo - P-- -° 2 ... (35.4)
..·. . . . . . . ....

0 bk0 .
bkk-
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If we multiply the matrices, calculated by Expressions

(35.1) and (35.3), and take the fact into account that B-1B = E,
we will have

(QO + eQ1 + 82Q 2 -- 33 + .. .)(P - C')=- B'JB E. (355).

Performing the multiplication, we obtain

QoP 4 Q1P + s 2 Q2 P -t-. [QC+QC-. ..E. (35.6)

Matrix Q is a matrix, inverse to P; therefore, Q0P = E, and

Expression (35.6) assumes the form

sQ1P d- 2Q2 P + P-Q3P -F. + · -+QoC Q-

-I--e2QC-+ 3Q~C+ ..... (03

or

£ (QP d- QoC)t- ;2 (Q2P - QJC) '- £3 (Q3P - Q2C) -'r.. O. ( 35.8)

By definition e ~ 0, and the expressions in the parentheses

are consequently equal to zero. Thus we obtain the system of

equations

Q1P= - QoC,

Q2P = - Q1C, (359)
Q3P = -Q 2 C.

Let us multiply the matrix equations (35.9) from the right

by Qo, then, taking the fact into account that PQ0 = E, we will

have
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Q,= --QoCQo,
Q2-- -QICQo,
Q3= -- Q2 CQo (35.10)
. . . . . . . . . .

i.e., the terms of Series (35.3) are described by the following
recursion formula:

Q:+- QCQ. (35.11)Q,+~= QCQo.

Assuming for further calculations that c = 1, we obtain the /162

following group of formulas for calculating the elements of the

inversion matrix:

B= P . C,

B-1--Q,

P-I = Q0 (35.12)

Q1-= -Q0CQo.. Q1+1 = -QCQ0,
Q=Q 0o+Ql- Q2 +-...

Let us now turn to a calculation of the approximate values

of the weight coefficients by Formulas (35.12).

Matrix Qo is inverse to diagonal matrix P

bI 0,° ** ... o.
qIj 0 ' 0 "0

._ Qo- (35.13)

_ _ I.. . . . . . . . .... ... .. l
0 0 kO 0 I. tih,/ -~'0
o o ... ¥5Z
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Let us find matrix Q1

q 1  ...0 0 - b O . ... bl]

Q0 - qoCq 2  0 b 21 0 o...b.-

............
0 0 q*kh -bk 1 bk 2 . bAk

OF 0 
SO . . qi-

X 0 q'22 , 0 =-- q21t ... q2k
O...................... .. I

0 . .. ... 0 .

-0Similarly, we obtain matrix Q2 I q 2

Similarly, we obtain matrix Q2

Q2 == -Q 1CQ 0

10I1*'
0

qz2

0o

0 q i2 *.. qik b12 *bik

q 0 *-- q,o  
b 2 l 0... b2kx

-t- I qjt 2 . . -bkl bk 2 . . .
. . .° - 1 q ±tt2 1 fi

q q ... q2h

l. -q0 I q, 2 ... qh

Matrix Q3 comprises the following approximation

Q 3.--- - Q20CQO : -

xJO I O
-0

q2I

. . .

. ..

q12  * * * fh -0 612 .. .

5."2 -- 'i 2l ° q 2l

a, " 221 2 .. . (... .........

( -,;J h -:h -:i: l2

]I

(35.14)

(35.15)

/163

(35.16)

etc.
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p Having carried out the operation

of multiplication of the matrices

?PJt</,\/ t 1according to (35.14) - (35.16), we

P" 1obtain the diagonal elements of matrices
-2 N - -/.:. Qo, Q1, Q2, and Q3, expressed by the

Pcoefficients of normal equations

Figure 54. q[i= 0,
b 2. (35.17)

qii: ~//1- hi/i/
,,, ~ bI _ bijbi-

qii =- bb.
bit bPP bpp bib/

The arbitrary diagonal element of the precise inversion

matrix Q is expressed by the sum

ql qi i'-qii- + (35.18)

The problem of the feasible number of approximations for

Series (35.18) was closely related to the problem of localizing

the measurement errors in continuous geodetic networks.

A continuous geodetic network, formed by three-dimensional

lines, is depicted in Figure 54. The central point of this net-

work is P0. Measurement errors, made at adjacent points, will

affect the position of point Po. It is natural that the first

series of points (P'1, P'2 ., P' 6 ) will have the strongest

effect, and the second series (P"1, P"2, ..., P"k) has a less

noticeable effect. Further, this effect will be more and more

weakened. From the theoretical point of view, all points of the

network, no matter how far it extends, will affect the position

of point P0. However, beginning at some series of points, this
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effect will barely increase. We manage to obtain numerical esti-

mates of the effect of remote points. The error in the position

of a given point of the network is represented in the form

-i- (35.19)All~ V(q]-F q-qi ~=~,L tr V '.

Variation of the value -/ as a function of the number of /164

approximations is shown below.

Number ofNumber of 1 2 3 4 5 6 7 8 ... X
approximations

/I_ ~ 0.71 0.76 0.81 o.84 0.87 0.89 0.91 0.92 ... 1.00

Moreover, we established that the approximation number essen-

tially corresponds to the number of the subsequent series of points

whose effect is taken into account in the given approximation.

Thus, matrix elements depend only on the quadratic coefficients

of the normal equations, i.e., they are calculated on the basis

of the information which is obtained at a given point. The ele-

ments of matrix Q2 are calculated by the non-quadratic coeffici-

ents of normal equations of type bij, which pertain only to a

single normal equation. In other words, the effect of the first

series of surrounding points is calculated with the aid of these

coefficients. Products of non-quadratic coefficients bij, ...,

bjp, appear in the diagonal elements of matrix Q3, i.e., the

effect of the second series of points is taken into account in

this approximation. Thus, the effect of more and more distant

points of the network is taken into account with each new approxi-

mation.

If from a number of approximations we select a region where

the error due to the effect of measurement errors, made in
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succeeding series of surrounding points, is less than 1/5 of the

total error in the reduced dependence vi'7 it turns out that

the effect of the fourth series of points may be disregarded.

Thus, the entire section of the network, over whose length there

is essentially complete attenuation of the effect of measurement

errors on the position of the given point, comprises three to

four series of points on each side.* Hence, we may conclude that

it is sufficient to limit ourselves to three terms in Series

(35.18). Then

)i. + -b-i (35.20)

Formula (35.20) expresses the approximate elements of the

inversion matrix by the coefficients of normal equations. In

turn, the coefficients of normal equations will depend on the

shape of the network and on the form of geodetic information

which is used to construct the given network.

Let the topocentric coordinates i and Yi and distances to

the AES Pi be measured in the network.

For the calculation, we assume that in the expression for

the error of the vector connecting the ground point to the AES

position,

MP' = (m~1 + nil cos2 6)? -J--_m_ 1M-= (-1- meCOS2 )p 2 -I (35.21)

all three components are equal to each other, i.e., /165

2 2 C~2m-mco --- .. (35.22)

*It is appropriate to recall that the same result was
obtained by K. L. Provorov with the aid of other means for two-
dimensional networks.
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Then, assuming that the mean square error of unit weight

p = m6, we obtain the following expressions for the weights:

(35.23)p6=1; p-=cos26; p-=(.

Under these conditions, the matrix of coefficients of normal

equations By 6, p has the form

B6,6 o=

] 00 0 0TpF

0 [] -. 0 (35.24)

_ _ _ 0 0 7 ,°t, °'-2 ° -[ ' ' ° 0 -- Ms
-- *. · . . .. . . . . . . . . . . . . . . ... .. . .. . .

The structure of Matrix (35.24) leads to the conclusion that,

if the spherical coordinates of the AES y, 6, and p in the space

geodetic network are measured with weights which are subject to

the relations (35.23), the system of normal equations separates

into three independent parts: corrections of the x-coordinates

are calculated from the solution of the first, those of the y-

coordinates - by the second, and finally, those of the z-

coordinates - from solution of the third.

The expressions for elements of matrix By 8 P of (35.24)

may be simplified if the distances between the points of the net-

work and the AES positions are assumed to be identical, i.e.,

if it is assumed that P1 = P2 = Pk = p ' Let us multiply matrix

By, 6, p by the scalar quantity p2 , and as a result we obtain

matrix By 6 p of very simple form
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1B, 6, p = p2B,,, 6, -
-Arn 0 0 -1 0 0 - ............. -1 0 0 2

jV 0 (35. 25)0 0 0 -1 0 0 . . 0 -1 - ...... o- 0
0 A 0 0 -- 1 0 0 -1 ......... 0 -1

-- 1 0 0 N. 0 0 --I 0 0 -.... 0.

The diagonal elements of Matrix (35.25) are equal to the

number of directions, convergent at a given point (the AES posi-

tion). Each row of the matrix will contain as many ones as /166
there are connections with the AES positions surrounding it at a

given point. The remaining elements are equal to zero.

If a space geodetic network is constructed only from measured

angles y and 6, the matrix of normal equations will be

T, -=p2 f ,, 6 =

1] -'; Inli - '2i -1+ 2 ,njl 111  . 1

--- _V"'i'i A --" . ? 
-A,,, ,it 'ni -| -,k~ 1 '~" 2 72lt.i (35.26)

.i i- 51 nt li mi-fs -1+n;n . . . ,

.. . . . o . · · . · ... . ..... ... . . . . . .... ..

where Zi, mi, and ni are the direction cosines of the directions

to the AES; and Ni is the number of directions convergent at a

given point or at the satellite.

For'a network with measured distances to the AES, the matrix

of normal equations has the form

- 12, -Es ii  12 mll nil

?...... --. - .... . 71.i.. n. ' l..i 'min n? . . *. .'
B........ _.... ..........
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By having specific expressions of the matrix elements of

normal equations, which occur in space networks with different

measurements, it is easy to obtain formulas for an approximate

calculation of the weight coefficients according to the general

expression (35.20).

Let the spherical coordinates y and 6 and distances p, whose

errors are assumed to be equal for simplicity, be measured in the

network. For this case, Formula (35.20) assumes the form

q, = qx, = q '- + I --' - (35.28)

where Ni is the number of directions measured at a given point,

and Nj is the number of directions at adjacent points, connected

to point i. If we use the average number of directions in the

network (Ni = Nj), we will have

q11- (I I- :). (35.29)

For the error in the position of the point, we obtain /167

V }i_77) . (35.30)11 11-M gylx --i a I- q,?, = It,() § t1) 3 °

Let us now consider a network in which only angular values

were measured - spherical coordinates y and 6. Substitution of

the specific values of the coefficients of normal equations into

Formula (35.20) after slight simplifications leads to the

expressions
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_ , _ .,-at ;2P2Ni->] J4
1 p2  [l -_ N- i ¢-- (35.31)

q N'--M-t (Ni-_m2) (N,-:Z)J2)

= p-1 + N, -- ', n,14
q,, ,Z, , t a (N,- >2) (+vj--~q2) '

q 2 1 -N 1 2) ( t r j- >n)(Ni-->]q2)J

in which Zq 2 is the mean value of the sum of squares of the direc-

tion cosines of the measured directions with respect to some

coordinate axis. The error in the position of the point in such

a network will be

'A-1-'N - (N - 2N -- ? 2+ -I (35.32)

In a network constructed from the measured distances to the

AES, the formulas for the approximate values of the weight coef-

ficients have the form

2 [1- 2,1- g]

l P [ d m['-Zm] (35.33)fil ,,?t- 2M? q' 'j

_~=- [ 1 _:Z,_-->],,']

Finally, for a combined network, in which some of the sides

are measured in addition to the spherical coordinates y and 6,

we will have

N-t

N- 1 N1t N 1
Nj 12. 12~i- Ni (j-z s
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N-1

, , -. , .u (35.314)
1

where t is the number of sides of a network measured at a given

point.

Formulas (35.34) are a generalization of Expressions (35.28)

and (35.31), since at t = N (when the distances are measured for

all directions), they will transform to Formulas (35.28), and at

t = 0 (i.e., only angular values were measured at the point), they

will transform to Formulas (35.31).
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CHAPTER 7

DATA ON DESIGN OF SPACE TRIANGULATION

36. Fundamentals of Space Triangulation Design

Design of geodetic networks is included in a determination

of the location of points on the Earth's surface provided that

the specific general requirements, valid for any constructions,

are followed. Their main requirements are:

- the density of the points should correspond to the purpose

of the network and to the purposes of its future use;

- the mutual distribution of points (the shape of the net-

work) should provide for calculation of the elements of the net-

work with the required accuracy;

- construction of the network should be carried out with

minimum labor and material expenditures.

Geodetic networks, constructed with the aid of AES observa-

tions - space triangulation networks - have a number of charac-

teristics. Continuous space triangulation networks should be

considered primarily as a set of ground points and fixed instan-

taneous positions of an AES in orbit (i.e., the points of space

observed from several ground points simultaneously). The number

of measured values belonging to the ground points will usually

differ from the number of measured values, comprising a certain
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synchronous group, i.e., belonging to a given AES position. The

number of the latter will usually be limited by the number of

ground points from which the given position of the satellite may

be physically'observed. The number of such measurements, con-

vergent at some ground point, is theoretically unlimited.

Figuratively speaking, a space triangulation network may be

regarded as a two-story structure. Construction of the "second

story" begins first - the AES positions in circumterrestrial

space are calculated. Each point of this story is relatively

weak due to the small number of measurements. However, a set of

such points makes it possible to obtain the coordinates of ground

points (i.e., the points of the first "story") with comparatively

high accuracy. Hence, it is clear that space triangulation design

may not be reduced to selecting the location of ground points /170

alone. It is just as important to provide optimum distribution

of the ground points and observed AES positions with respect to

each other. This means that space triangulation design includes

selecting the orbital parameters of the AES and the designation

of the ephemerides for observations.

Another characteristic of space triangulation is the absence

of direct observations between ground points. The connections

between them are accomplished by the satellite positions. More-

over, due to the considerable separation between ground points,

the observation conditions at them may differ sharply. It may

happen that the optimum accuracy of a space triangulation figure

canhot be realized due to disturbances in the conditions of AES

visibility. The concept of "visibility between points" in space

triangulation is considerably more complex than in ordinary

geodetic networks. Actually, at all points from which a given

satellite is being observed, the following conditions should

be adhered to:
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the elevation of the satellite above the horizon may not

be below a specific limit;*

- there is line-of-sight (geometric) visibility between the

observation point and the AES;

- the mutual location of the Sun and Earth, the satellite

and the observation point make it possible to photograph the

satellite on the background of stars.

Thus, space triangulation must include calculations of the

optimum observation conditions and their comparison with real

observation conditions at the points.

The effect of errors in such a network and in its individual

figures provides the scientific basis for compiling space trian-

gulation designs.

The nature of the distribution and the effects of errors

determine the most general requirements which should be fulfilled

in construction of space triangulation networks and figures.

This is related to the measurements and their accuracy, the geo-

metric characteristics of the network, and the distribution and

accuracy of starting points.

Specific design will always be related to the selection of

the optimum variant of the network structure under certain limit-

ing conditions. These may be: physical and geographic conditions,

the given value of some elements of the network, the necessity

of using AES already launched, etc.

*This limit is determined by the possibility of calculating
refraction errors.
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The requirements on the optimum conditions of network struc-

ture may be defined by obtaining the required accuracy or by

obtaining some accuracy within a given observation period.

The problem of space triangulation design may be solved within

broad or narrow limits.

The more common case is creation of a design on the basis /

of the purpose of the overall goal. In this case, the optimum

data from the point of view of accuracy within the established

period of observations should be determined: mutual distribution

and separation of observation points, the number of AES and their

parameters (mainly, altitude, declination, and launch time), and

AES observation zones from each of the points.

When the position of the points is given, the optimum orbital

parameters of the AES and the observation zones are calculated.

On the other hand, if the orbital parameters of the AES are given,

the optimum distances between points, their location, and then the

observation zones are selected.

In the latter case, when both the position of the points and

the orbit of the AES are given, the procedure reduces to estab-

lishing the boundaries of the optimum zones and the number of

observations in these zones. As a result, the locations of the

ground stations and the desired orbital parameters Of the AES

are indicated, the a priori errors of the network elements are

calculated, and the areas of the subsatellite points over which

it is desirable to observe the AES are indicated in documents

in numerical or graphic form. Finally, the AES observation con-

ditions at each point should be calculated and the approximate

long-term forecast of observations of the AES and its ephemerides,
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which are required for organization and planning of simultaneous

observations at a group of ground stations contained in the given

network, should be compiled.

The first part of the data, as in ordinary triangulation, is

the essential part of the procedure. The second part, similar to

the observation program at an ordinary trinagulation point, is an

independent problem of calculating the AES ephemerides for

observations.

In connection with the foregoing, the problems of space tri-

angulation design are outlined in the following sequence:

- study of the overall characteristics of error effects;

- calculation of the optimum characteristics of the networks

and AES orbits;

- compilation of the space triangulation design;

- calculation of the visibility conditions and ephemerides

of AES observations.

In this paper, the latter problem - the principles and

methods of calculating the ephemerides of AES observations for

the observation points - will not be considered.

37. General Analysis of the Formulas for A Priori Estimation

of the Accuracy of the Elements and Elementary

Figures of Space Triangulation

Combinations of individual figures are used to calculate the

position of both single points as well as those of space triangu-

lation series and networks. Moreover, the interrelationship

between different geometric parameters and their effect on the
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accuracy of the result are simpler and more descriptive in the

elementary figures. Therefore, establishment of the optimum

geometric parameters of the elementary figures of space triangu-

lation is the main problem, which precedes the correct design of

space triangulation networks.

A superficial examination of the expressions for an a priori /172

estimation of the accuracy of the elements and elementary figures

of space triangulation makes it possible to make some judgments

about the optimum values of the geometric parameters.

Thus, to construct elementary figures containing directions

measured from the observation points to the AES positions, it is

desirable that these directions be measured by the shortest dis-

tances. Consequently, low-orbit AES are optimum for photographic

observations; it is preferable that their routes pass through the

observation point. A value of the intersection angle, close to

90°, is optimum for all intersections of directions and planes,

and a value of the intersection angle equal to zero or 180 ° -

for linear-angular intersection.

These general requirements are perceived directly from the

given formulas.

However, most expressions for the errors in the elementary

figures are functions of several geometric parameters, and it may

not always be possible to judge the optimum value of all geometric

parameters by the form of the formula. Thus, for example, the

expression for the error in the direction of the chord (32.2)

indicates that the error is directly proportional to the dis-

tances from the points to the AES and inversely proportional to

the sine of the angle between the planes. The requirement of
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minimum distances is contradictory to some extent to the require-

ment that the value of the angle between the planes be close to

90°. Some compromise optimum condition should be sought.

If we may assume, based on the error in the position of the

hyperboloid surface, that the requirements of the maximum length

of the celestial chord and the differences in distances, equal to

zero, are optimum, i.e., the symmetry of Doppler observations with

respect to the path, we may assume (based on the error in the

length of the focal radius of the hyperboloid) on the other hand,

that the maximum difference in distances, i.e., the maximum

asymmetry with respect to the path, is optimum. Therefore, it

is difficult to make a Judgment about the optimum combination of

values Ap, d and I at first glance.

Besides the foregoing, a number of cases may be presented

when establishing the optimum parameters, formally corresponding

to the minimum error, is often unreal or unattainable, and is

sometimes generally meaningless with respect to the problem being

solved.

It is most valid to solve a system of equations of form

M/3v = 0, from which we also obtain the optimum parameters, in

order to find the optimum geometric parameters vi, contained in

the formulas for an a priori estimation of the accuracy of the

figures. However, the expressions for the errors due to indepen-

dent geometric parameters are often very cumbersome, and solution

of the systems is complex. This may be accomplished only for

individual elementary figures. Therefore, the optimum geometric /173

parameters, contained in the formulas for an a priori estimation

of the accuracy of the elements and figures of space triangulation,

are usually calculated by numerical methods.

259



Calculation of the Chord Direction

The formula for the error in the chord direction (32.2)

makes it possible to arrive at several conclusions immediately.

First, the error will be minimum at equal distances from the

points to the AES positions, i.e., the AES positions should be

located symmetrically with respect to the center of the chord

in a plane perpendicular to it and passing through its middle.

Secondly, it follows from (32.2) that the intersection angle at

an AES position, equal to 180°, is optimum, i.e., observation of

an AES position, located on the chord itself, is essentially

absurd.

Actually, the combination of these conditions indicates the

feasibility of AES observations at the minimum elevations above

the horizon of the observation point.

At a given AES altitude (H) and at a given minimum permissible

value of AES elevation above the horizon of the observation point

(amin),' we can find the maximum distance from the point to the

AES position by the formula

Pax = (I--' 11)2-R 2 cos 2 ami n--P sin mj' (37.1)

where R is the mean radius of the Earth.

The most suitable shape of the figure from which we calculate

the direction of the chord will depend on the optimum chord length.

The value Dopt is obtained from the solution of the equation

dmB (A -8B - 12BC -5'2) DS +
dD

-- (5AB 4- 6AC--4B 2C--7BCG -- 4C3) )G- (37.2)
- 3 (A2 - 4ABC- I C- -6 - C4) D -.

- (2A 2C - ABC2- - 4AC3 - B3C4) D2 - 4AC (A - C2)= 0,
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where
i, U) all A Xt -=-- 4R2 0WEtX;

8-1B = (R2 - p.;
D C= (2RII 11h2 _ourn2

6 - i

The dependence of optimum chord

4 length on AES altitude is shown

2_ in the graph (Figure 55) for
0 2 4 b 6 hthous. km amin = 20° (the optimum angle

Figure 55. between the planes [Xopt] essen-

tially does not vary as altitude varies and is equal to 76°).

This graph may be used to select the optimum AES altitude for

space triangulation with given chord lengths.

If the chord length is less than its optimum value for a

given AES altitude, the most suitable shape of the Cigure

will be determined by the distances from the points to the AES

positions symmetrically located. In this case, the expression

for the error in the chord direction may be represented as a

function of the distances to the AES. The optimum value of the

distance to the AES popt is calculated from the solution of the

equation

dmp _p s- (3A- 4C) p -
dp

(4AB + 5AC - 32BC- (37-3)
20C2) p4 __ (A2B - 12ABC -X-

0 AC2 12C3 )p 2 AC (AB-:

+ C2) = 0,

where A==D2

B A R2 D ),

C -- 2 RH -'- Hd2 4 D2
D2

C -2P111J
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The dependence of the optimum

values of the distances to the AES

and of the values of angles A and

a on the chord length for several

values of AES altitude is presented

in the graph (Figure 56).

Thus, the value of the geo-

metric parameters of the optimum
.km figure for calculating chord direc-

tion (Figure 57), the main one of

which is the ratio of AES altitude

to chord length, is calculated by

the graph (see Figure 55).

At a given chord length and

AES altitude, the optimum para-

meters, which determine the shape

of the figure (the value of angle

Aopt or of Popt), are found from

the graph (see Figure 56).

Similar graphs may be used

in space triangulation from chord

directions to select chord lengths,

AES altitude or, if these data are

established, to select the shapes

of the figures for calculation of

chord direction.
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Three-Dimensional Angular Intersection

cWhen calculating the position of the point from the direc-

tions observed from it to two known AES positions, Expression

(32.3) should be used to establish the optimum parameters of

the elementary figure. The distance p may be expressed by length

d of the celestial chord, connecting the AES positions

2 d2 (37.4)
2 (i--cos rp)

Having substituted (37.4) into (32.3) and having set the

derivative of the expression obtained from Y equal to zero, we

obtain the cubic equation

dM
'-- d-= cos3 d - 0,5 cos2 O- 6,5 cos ( -- 2,5 = 0.

(37.5)

From the solution of Equation (37.5), we find three roots

(+13.382; - 13.500 and -0.382). The root at which copt = 112.5°

corresponds to the problem. This value of the angle also deter-

mines the optimum shape of three-dimensional angular intersection

with provision of the minimum p for the given AES altitude.

When calculating the position of the point from the inter-

section of the chord directions, by a similar discussion we

obtain the most suitable value of the angle between the chord

directions at a specific point.

However, with respect to the optimum shape of the inter-

section of chord directions, additional requirements enter in.

These requirements are maximum advance of the figure in calcu-

lating the position of a single point and constant advance in

series and in continuous space triangulation networks from the

chord directions.
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The optimum shape of the figure to calculate the position

of a single point should provide a minimum error in the position

of the point with maximum advance of the figure, i.e., with maxi-

mum separation of the calculated point from the starting points.

Having denoted the advance by A, we obtain the expression of this

condition in the form

M.
A = min.A

The shape of the figure may be characterized by the relative

advance (A/b), i.e., by the ratio of the absolute advance to the

distance between the starting points - the base (b).

Let us consider the problem of the optimum shape of the

figure for calculating the position of a single point with

respect to the two main types of figures considered in Section 18,

i.e., when the point is calculated at the intersection of chord /176

directions or by sequential three-dimensional angular intersec-

tions. In this case, we will proceed from the fact that separa-

tion of the calculated point from each of the starting points

corresponds to the optimum chord length at a given AES altitude.

Expressions for the error in the position of the point in

these types of figures, represented by Formulas (32.5) and (32.4),

respectively, indicate that there should be an increase in the

angle of intersection at the calculated point (cj) in order to

provide a minimum value of the error.

Variation of the relative advance has a different effect on

changing the angle of intersection in the figures (Figure 58).

With an increase of the relative advance, the angle of intersec-

tion of the chord directions decreases, whereas the zone of
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simultaneous visibility of the AES from three points, and, con-

sequently, the possibility of increasing the angle of intersection

of the directions from the AES to the calculated point increases.

The nature of the variation in the accuracy of calculating

the position of the point with a variation of the relative advance

for these two types of figures may be Judged by the graph (Figure

59), constructed for the case H = 0.25R, amin = 20°, and m = 1".

The following may be established from the graph:

- for intersection of the chord directions, the error is

minimum at A/b = 0.33, which corresponds to the angle of inter-

section Y = 112°27', but such advance of the figure is unsuitable;
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- for sequential three-dimensional angular intersections

in space, the error is minimum at A/b = 2.36, which corresponds

to the equality of the length of the base b and of the celestial

chord d

dopt -bopt 2D F ( 4ai,.k- 2-

(37.6)

where
A= (it -- )2 -/ 2 -~ p2,

B = 2 (R +II)R.

As can be seen from the graph (see Figure 59), the optimum figure

for both types of construction is one with a relative advance

A/b ~ 2.0 - 2.5, and the increase of relative advance above the

value of 2.5 essentially does not lead to an increase of absolute

advance (Figure 60).

As a result of the analysis, we may conclude that the

position of single points with the aid of synchronous photographic

observations with a relative advance less than A/bopt = 2.5

should be calculated by using the three-dimensional intersection

of chord directions, but in the case of a large relative advance,

the sequential three-dimensional angular intersections of direc-

tions to the AES should be used.
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Linear-Angular Intersection

The formulas for the errors in the position of the point (or

in the position of the AES) at linear-angular intersections

(32.12), (32.16), and (32.17) indicate that the point is calcu-

lated more precisely if the angle O between the lines, along

which the directions and distance are measured is equal to zero,

i.e., from the polar intersection. The advantage of such an

elementary figure, when combining photographic observations and

measured distances, as can be seen from Formula (32.11), is the

fact that the accuracy of calculating the position of the point

does not depend on the shape of the figure. The error will be /178

proportional to the distance to the AES and, therefore, will be

minimal when observing the AES on the path of the point.

However, in the construction of space triangulation series

and networks, this requirement may contradict that for maximum

advance of the figure and a minimum relative error in calculating

the position of the point.

Here the optimum figure will be that containing two sequential

linear-angular intersections, provided that observations of the

AES position are at a maximum distance from the calculated and

starting points in a plane passing through them and the center

of the Earth (Figure 61).

The absolute advance of such a figure will be calculated by

the expression

ax m 2 RPmax COS mnin
Dinax R + i

= -If (37.7)

Its variation with AES altitude is shown in Figure 62.
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When calculating the AES position from a combination of

photographic observations and measurements of the differences in

distances, the accuracy of intersection depends on its shape,

which determines the relationship between the difference in dis-

tances and the focal radius of the corresponding hyperboloid.

It is obvious from Expressions (32.16) and (32.17) that they

contain the term d2Z 2/Ap4 , which induces contradictory require-

ments, on the one hand, for the maximum difference in distances

(Ap) and, on the other hand, for minimum values of the celestial

chord (d) and separation of the point from a plane passing through

the center of the chord (1). Investigation of the dependence of

these values on the shape of the figure indicates that the opti-

mum condition, satisfying the requirement dl/Ap2 = min, will be

fulfillment of observations on a trajectory passing through the

zenith of a point, where one AES position should be observed at

the zenith, and a second should be observed at the edge of the

visibility zone.
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Calculation of the Position of a Single Point by the /179

Direction and the Difference in Distances

If the point is calculated from an elementary figure con-

taining the direction and the difference in distances from the

point to the known positions of the AES, it is obvious from

Formulas (32.18) and (32.19) that the optimum figure is one

in which the AES positions are observed on a trajectory passing

through the zenith of the point, at the boundary of the zone of

visibility. In this case, the length of the celestial chord is

maximum, and its center is located at the zenith, i.e., at the

minimum distance from the point. The difference in distances

is then equal to zero. Thus, we may assume that the advance of

this figure is essentially equal to zero. When the conditions

deviate from optimum, the accuracy of calculating the position

of the point to provide a substantial advance decreases sharply.

Based on the foregoing, the use of an elementary figure

where the difference in distances is calculated to two known

AES positions, and the direction is calculated to a third posi-

tion [see Formula (32.18)], should be considered unfeasible.

Calculation of the Position of the Point from the

Direction and Chord Length

We may conclude from analysis of the formula for estimating

the accuracy of the elementary figure for calculating the posi-

tion of the point - from the direction of the chord and its

length, obtained from the measured distance from the point to

the AES (32.13) - that the error in the position of the point

is minimal at a minimum value of the ratio between the unmeasured

distances to the AES and the measured distances.
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The optimum observation conditions may be achieved if the

AES position, to which the distance is measured, is located in

a plane passing through the chord and the center of the Earth,

and the measured distance is maximum for a given AES altitude

at a given minimum angle of AES elevation above the level of the

observationspoint. Under these conditions, the error in the

chord length, which determines the accuracy of the position of

the point, will be

m2 D 2+PmaxPk sD2

xD2 2p2 Sl 2 f (37.8)

By varying the values of mD/D by this formula, we can obtain

the optimum chord length Dopt and the corresponding values of

PJk and Ck' which are its functions, for each combination of

given H and a.

Thus, for a = 20°, a graph of the dependence of Dopt on H,

i.e.. a graph of the optimum values of the ratio of chord length

to AES altitude, is presented in Figure 63. Incidentally, it is

obvious from consideration of the graph that the optimum chord

length in the given figure is close to the optimum chord length

in the figure for calculation of chord direction.

In the case when chord length is less than optimum for a

given AES altitude, the suitable shape of the figure may be

characterized by the optimum value of the angle of elevation

of the AES, to which the distance of the observation point above

the horizon is measured.
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Figure 64.

The graph of aopt for the /180

I? 7 4 Ythous.km calculated range of chord length

Figure 63. values (D) at a given AES altitude

~Figure 6LB.

may be constructed similarly to

the graph presented in Figure 56 and used for projection of the

observations.

The figure for calculating the position of the point from

the direction and length of the chord, when combining synchron-

ous photographic observations and measurements of the difference

in distances to the AES positions, is another matter.

The shape of the figure may be characterized by several

parameters of the schematic projection of the figure on the

Earth's surface (Figure 64):

- by the angle between the chord directions and the AES

path (K);

- by the length of the celestial chord (d);

by separation of the projection of the celestial chord

center from the center of the ground chord along (A) and perpen-

dicular to (p) its direction. The best method for calculating

the optimum parameters of the elementary figure to provide the

condition mD/D = min would be, for example, at a given AES

altitude, solution of a system of equations
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However, obtaining a system of such equations and solutions of

it are very complicated.

It follows from an analysis of the formula for the error in

chord length (32.15) that one of the requirements for the optimum

shape of the figure is to provide a maximum value of the differ-

ence in distances to the AES. When the distances to the AES are

equal, the error in the chord length is equal to infinity, i.e.,

the chord length, and consequently, the position of the point as

well are not calculated. Combination of this requirement with /182

that for maximum advance of the figure permits us to assume that

the shape of the figure will be optimum if the condition is ful-

filled that the distance from each of the points to at least one

AES position is maximum (37.1).

Let us consider such a figure with different values of the

angle K between the chord direction and the AES path.

Diagrams of the figures considered, as well as their compara-
tive data for H = 0.2R and amin = 20° are presented in Table 2.

Analysis of the figures presented in Table 2 leads to the

following conclusions.

The first figure, which is optimum for calculating the chord

direction, makes it impossible to calculate the position of the

point, because Ap = 0 and the chord length may not be obtained.

272



TABLE 2
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The most suitable value and shape of the second figure are

calculated by the optimum chord length, because the length of

the celestial chord d = f(D).

The third figure is less suitable than the second, because

the difference in distances in this figure to the AES positions

is equal to zero and, consequently, the differences in distances

in this figure may be measured only from another point.

The most suitable dimensions and shape of this figure are

also calculated by the optimum chord length, because d = fl(D)

and K = f2(D).

The most suitable value and shape of the fourth figure are

calculated by the optimum chord length and the value of angle K,

because D = f(K).

The fifth figure, where the positions of the AES and of the /183

points are located in a single plane, passing through the center

of the Earth, makes it impossible to calculate the chord direc-

tion, and consequently, the position of the point. However, if

the chord direction has been calculated previously (only from

simultaneous photographic observations of other AES positions),

this type of figure is optimum in terms of the accuracy of cal-

culating the chord length.

In conclusion, a construction is presented which is a com-

bination of the first and fifth figures, in which four rather

than two AES positions are observed (the sixth figure).

A comparison of the advantages of these figures may be made

on the basis of the graphs (Figure 65), constructed for a = 20°,

mE = 2", and mAp/H = 1:100,000.
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Figure 65. and Table 2 that the second fig-
ure is less suitable (it has a

less optimum chord length and a greater relative error in the

point) than the remaining figures, which essentially provide

identical results.

Upon selection of the optimum type of figure for a specific

chord, we are forced to consider the real value of angle K between

the chord direction and the direction of the AES path, calculated

by the angle of orbital inclination of the AES to the equator and

by the mean latitude of the chord. Therefore, the range of

application of the elementary figures of the optimum shape is

limited.

With given orbital parameters of the AES, we can recommend

the following as optimum:

- the sixth figure at 0 < K < 15°,

- the fourth figure at 15° < K < 45° ,
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- the third figure at 45° < K < 750, and

- the second figure at 75° < K < 90° .

When the given chord length is less than optimum, the most

suitable figure is calculated by the optimum distance from the

point to the AES position (Popt).

The nature of the variation of the value Popt, as well as /184

of other parameters, characterizing the shape of the fourth

figure d, K and X, with variation of the value D/H, is shown in

the graphs (Figure 66), and the variation of the absolute (Mj)

and relative (Mj/D) errors in the position of the calculated

point as D increases at H = 0.2R is shown in Figure 67.

The graphs indicate that where D < Dopt, the value of all

parameters increases. It continues at D 2 DoptK, and d and X

decrease, while Popt remains equal to Pmax'

The construction of such graphs for the proposed chord

lengths of the projected triangulation may be used as the basis

for selecting the optimum figures.

Figures with an Excess Number of Measurements

When deriving formulas for estimating the accuracy as a

function of the number of excess measurements, we considered the

increase in the number of measurements in the figure, which

alters its geometric shape, as the most general version.
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j/D M, We considered the optimum
1.30000 -150 - \ Mj shapes and dimensions for the

D elementary figures. Moreover, it

1:20000 -100 was established that the figures

[which differ slightly from the

:,000 50 elementary figures by the number

'000 200 of measurements, are formed with
Figure 67. observations of individual AES

positions, whereas during prolonged observation sessions, the

figures from which the positions of the points are calculated

may contain a considerable number of excess measurements.

Since the sighting target in space triangulation is the

instantaneous position of a satellite, moving according to a

specific law, the frequency of the AES passing through the

optimum locations for its observation, which we have selected

for the elementary figures, will in most cases be considerably

less than the frequency of passing through the entire zone of

the joint visibility of the AES from the calculated and starting

points.

Consequently, in order to achieve a specific accuracy of

the results of space triangulation within a limited observation

time, the requirements on the optimum shapes of the figures may

be contradictory to the requirement for the required number of

measurements.

In order to establish the relationships between these

requirements, let us consider the example of estimating the

accuracy of the result of the simplest of the space triangulation

figures - figures for calculating the chord direction upon

observation of more than two AES positions from the ends of

the chord.
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Let six AES positions, equally dis-

tributed perpendicular to the chord

/k direction (Figure 68), be observed in the

zone of joint visibility from the points.

Moreover, two AES positions (kl and k2)

are located at optimum positions for the

elementary figure. We may assume that an /185

2 interval equal to one sixth of the zone

of visibility length corresponds to each
Figure 68. of the six AES positions.

Since the frequency of AES passages through each interval

should be assumed to be identical, as much time is required for

an equal number of observations of all six AES positions as is

necessary for the same number of AES observations at two optimum

positions.

Using Formula (33.8), we may calculate the error in the

chord direction during observation of all AES positions (m6) and

of two optimum positions (m2). The ratio of the values of the

errors is equal to: m6:m2 = 1:1.44.

If it were necessary to carry out the same~number of obser-

vations to calculate the chord direction in the given case, the

AES positions k, and k2 would be observed three times, and the

ratio of the errors would be equal to m6:m2//t = 1:0.83. It is

obvious that in the given case the error, obtained as a result

of AES observations at optimum positions, is less. However,

three times as much time is required to achieve it, because the

frequency of the AES passing through the intervals, corresponding

to positions ki and k2 and comprising one third of the total

length of the zone of visibility, is three times less than the

frequency of the AES passing through the entire zone of visibility.
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The result obtained indicates that the optimum condition to

achieve the required accuracy over a limited observation time

may be observation of AES positions, uniformly distributed in the

zone of mutual visibility of the points.

The area of the mutual visibility zone may be approximately

represented by the expression

S = 0,5 3 }/2---i 1 D- ( 37.10)

+ 2 2

The areas of the mutual visibility zones at different AES

altitudes may be obtained in order to establish the optimum para-

meters of the figures, considered in the example, for calculating

the chord direction at a given chord length and a known minimum

value of AES elevation above the level of the observation point.

Since the element of the area, corresponding to observation

of a single AES position, is given, we may obtain the number of

AES positions, uniformly distributed throughout the visibility

zone, for the different AES altitude values.

We may now look for the minimum value of the total error in

the chord direction, obtained as a result of observing all n AES

positions in the zone of visibility, as a function of AES altitude

for each chord.

For these purposes, Expression (33.7) may be simplified /186
n

" d ,
2 m npcp m _, 2pcp.

-D CZ D, c (sin 2q)cp D2 (n-t)(sian2) (3711)

PkPk,^h

MO jflp

Okyph'

279



where the average values of p2p and (sin2  )cp may be obtainedcp cp

each time for the entire zone.

Analysis of Expression (37.11) indicates that the ratio
pp2 /(n - 1), i.e., the ratio of the increase in the square of thecp
distance to the AES to the zone of mutual visibility, basically
changes as AES altitude varies. On the basis of the variation

of this ratio, we may establish the opti-
Pop mum AES altitude for each chord length,

j000
providing a minimum direction error when

2000- observing AES positions, uniformly dis-

/ tributed within the zone of visibility.
lOpD?

The graph of this dependence for amin =

1 000 z0oo0 J000oM 20°0 is presented in Figure 69. It is

obvious that the optimum ratio of chord
Figure 69. length D and AES altitude H differs from

that required for the elementary figure

(see Figure 55).

Thus, consideration of the variations in the requirements

for the optimum parameters of the figure for calculating the

chord direction with excess measurements leads to a number of
important conclusions.

With a given number of observations of AES positions, which
are required to obtain the result (which may be, for example,
with limited operation of the observation equipment), observation

of AES, located at positions corresponding to the optimum shapes
of an elementary figure, will be preferable.
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Observations of the excess AES positions at locations

unsuitable for obtaining the results from an elementary figure,

in combination with AES observations at optimum positions for

the elementary figure, have a negligible effect on the decrease

in accuracy.

The optimum condition, for a given time for the observation

session when the accuracy of one observation is low and a large

number of observations is necessary to obtain the required accur-

acy, will be observation of all AES positions, uniformly distri-

buted in the zone of mutual visibility from the points.

In some cases, the AES observation zones must be decreased.

This may be done optimally when the condition of approximating

the observed AES positions to the most suitable ones for the

elementary figure is followed. The dimensions of the zone of

mutual visibility, in which the positions of the observed AES

positions are uniformly distributed, may be decreased without a /187

loss of accuracy by increasing the elevation of the observed AES

above the horizon. Consequently, the visibility zone for such

cases is established on the basis of the value Popt' i.e., the

optimum distance from the point to the AES, rather than on the

basis of the value of Pmax' The dependence of the variation of

Popt as the ratio H/S increases may also be represented graphically.

Moreover, by increasing the elevation, we weaken the effect of

refraction on the accuracy of measuring the directions from the

point to the AES positions.

The conclusions obtained, as well the proposals for estab-

lishing the optimum conditions to obtain chord direction during

the observation of an excess number of AES positions, may also

be extended to other figures, for example, different types of

intersection.
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For figures whose excess measurements are unrelated and

whose error is calculated, for example, by Expression (32.15),

the requirement of obtaining the necessary accuracy within a

given time also entails observations of AES positions, uniformly

distributed in the zone of mutual visibility from the observation

points.

In order to calculate the optimum dimensions of the zone of

mutual visibility in the given case, it is expedient to use the

criterion of the minimum ratio between the mean error for the

zone and the area of this zone, proposed by Lambeck for calcula-

tion of chord length by laser measurements of the distances to

the AES [58].

38. Optimum Conditions for the Transfer of Coordinates

in a Space Triangulation Series

The criterion of the optimum conditions for continuation of

a space triangulation series may be the minimum relative error in

the position of the end of the series, i.e., the ratio of the

error in the position of the last point of the series (Mn ) to its

length (L)
Ma rmin
L

(38.1)

provided that the number of points of the series is minimum.

The optimum shape for the elementary figure of a

space triangulation series, besides the conditions: Mj/A = min

and A/b = max, should satisfy the requirement of constant advance.

This requirement may be satisfied by several diagrams for a

series, shown in Figures 70 - 75.
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Figure 70.
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Figure 71

3

Figure 72. Figure 73.

The optimum shape of the figure in the first diagram is

intersection of the chord directions, which cross at an angle

of 60°. Its dimensions are calculated by the optimum chord

length for a given AES altitude (Figure 70).

An elementary figure with a relative advance equal to A/b X

2.2, is optimum for the second and third diagrams for the series

(Figures 71 and 72). In this case the errors of both figures

are similar and do not exceed the doubled error of the first

figure, and the absolute advance differs only slightly from the

maximum advance.

The optimum shape and dimensions of the figure for the

fourth diagram of the series (Figure 73) are calculated by the

optimum distance between the points, which may be found from a

solution of the equation dMj/dD = 0 for a given value of AES
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Figure 74. Figure 75.

altitude. In this case, the error in the position of the point

is calculated by the formula
(it A-B 4- plljax2

(A -- BL'- D°' *

4 (A--B) p~max inaxJ (38.2)
X B

tOLm- + B2 2
L P2ax 2R2p2n X

where

A=(R I H) 2 ,- R 2,

B-2R2 (A--O~.ax)
2R2- D2

The shape and dimensions of the standard elementary figure

of the fifth diagram, shown in Figure 74 in the projection onto

the plane passing through the points, the AES positions and the

center of the Earth (which also contains the characteristics of

the given figure), are clearly calculated by the distance between

the points, dependent on AES altitude, as follows from the

expression

D2 = 2R2 1 -cos 2 Y

X (arccos o + H)2A-R2-p2ax2(R+H)R (38.3)
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A,thous.km Figures, formed by intersec-

g 6 tion of the chord direction with

8 , the synchronization plane (Figure

6 / 75), are used in the last and

4 5 sixth diagram for construction of

2 Diaa the series. The use of such fig-

, , , , ures may be required to achieve
F 4 6 8 Hthous. km6 thous.km an advance equal to or greater

Figure 76. than the optimum chord length.

In this case, the maximum distance between the points through

which the synchronization plane passes is calculated by Expression

(37.7).

The dependence of the advance on AES altitude for these

figures is shown in Figure 76.

- On the basis of (38.1), Expression (34.1) for the error in

the position of the nth point of the series indicates a preference

for a series from those figures which provides aminimum coeffici-

ent of the increase in error K.

When creating a space triangulation series, the figures will

not be essentially elementary, but will contain a considerable

number of measurements. However, the optimum dimensions of the /191

elementary figures may be used for the comparative characteris-

tics of series constructed from these figures. This problem is

especially timely for space triangulation series, constructed

from photographic observations, since the range of figures in

such a triangulation is large, and the results depend mainly on

the shape of the figures.
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Establishing which diagrams

z are more suitable for a space tri-
t:2000QD0 - 1 angulation series may be done by

4 considering graphs which indicate

I 0000 the variation of relative error in

calculating the position of the

20100 6 I000 l 0D 180o0 zfM point of the series as a function

Figure 77. of the length of the series (Mn/L).

Such graphs are presented in Figure

77 for series of figures of optimum shape and value (at a = 20°,

H = 0.2R, and ms = 1") for the five diagrams shown in Figures

70 - 74.

Space triangulation series based on the first and fourth

construction diagrams are recommended for more economical trans-

fer of coordinates. The fifth diagram may be used in rare cases,

dictated by physical and geographical conditions.

When constructing space triangulation series from combining

observations, sequential use of the figures for calculating the

point from the direction and length of the chord, when combined

photographic observations both with measurement of the distances

and with measurement of the differences in distances to the AES

positions, has a number of considerable advantages compared to

sequential use of figures, which calculate the AES positions,

and then - the position of the point. The primary advantage is

the fact that such figures require only a single starting point,

which makes it possible to form networks from chords and chords

similar to polygonometric ones. The secondary advantage is the

possibility of calculating the position of the point from radio

engineering observations at a single point - at any end of the

chord.

286



In the extension of a coordinate sys-

A-/ , . . temn, space triangulation series, compiled

from figures of low value, with an optimum

. 4 V \ ' -.-t- ratio of distances between the points and
I 3 5. 7 9 I1

I H AES altitude, are preferable. This con- /192

Figure 78. cept has already been expressed by Batrakov
E3].

Thus, for example, when the errors in the common points of

two series, constructed by the first diagram with an optimum ratio

of AES altitude and advance, equal to 3,000 and 6,000 km, respec-

tively (Figure 78), and presented in Figure 79, are compared, it

is obvious that the relative error

in the points of the first series

ooooo ' is two times less. It is obvious
that this same concept is also

A80D 3000,~ valid for extension of a coordin-
- Mj=6000KM)

ate system to a specific area by

constructing a continuous space
40 - triangulation network.

.20 o .4/=00M
It should be said in conclu-

1:100000 ,sion that figures of,the first5 7 9 IIj
I H m Y F. diagram (see Figure 70) - i.e.,

Figure 79. equilateral triangles, constructed
from the chords of a length which

is optimum for the given AES altitude - may be used to construct

a continuous space triangulation network, which requires retaining

the value of the elementary figures in any direction.
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39. Optimum Combinations of Measurements in Continuous

Space Triangulation Networks

The problems of the effect of the geometric shape of space

triangulation figures are more timely for networks in which only

the angular or only the linear values were measured.

Let us evaluate the effect of the geometric shape of the

network in terms of the error in the position of the jth point

MI=_1 Vqw1 +qy1 +q2 f, (39.1)

where qx qy , and qzare calculated by Formulas (35.31) -

(35.34).

Certain assumptions with respect to the shape of the network /193

must be introduced for further analysis. We first assume that

all directions, measured from a single point, are uniformly

distributed with respect to the coordinate axes. In this case

12. 2=- in2 - q2 and, consequently, taking the fact into

account that 12,- 1, -.- =- N., we obtain q2 = N/3. Formulas

(35.31) will then assume the form

3 p%
=3) <(39.2)

By comparing Expressions (39.2) and (35.31), we may conclude

that, if the directions to the AES in the network are distributed

uniformly with respect to the coordinate axes, the accuracy of

calculating the points in this network is reduced by approximately

/]7- compared to a network in which three elements (i.e., y, 6,

and p) are measured.
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Figure 80.

Now let some point in the network be

calculated such that all directions,

measured from a given point, are similar

- to each other. Let us introduce a coor-

dinate system such that the directions are

located close to the X-axis, and the origin

of the coordinates coincides with the cal-

culated point J (Figure 80). Let us denote

the angles, composed of directions 1, 2,

..., i with the X-axis, by al, a2, ..., aj.

We will then have

·1 - l a l Sil 2 C%,

1-2 sill a 2 ,

. . . . . . . .

1 _ II = sin 2 
A,,

No--124 = I sin3 a,.

(39.3)

(39.4)

Assuming that al = a2 = ... = ai, we obtain

N.--- : l= 1V, sin2 ca. (39.5)

For angles formed by these same directions 1, 2, ..., i,

with the Y- and Z- axes, due to the smallness of angles ati, we

may assume that mi ni 0, and, consequently

(39.6)
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Taking these assumptions into account, Formulas (35.1) may be

written in the form

p,, { i'=z~
qxc= Nsin2at {. 2± sin(cz }

But /194

1- c (1 - sin ac)2 - - 2 sin2 a -- sin4 a,

and therefore,

n.. p 3 1 3i2 ai (39 7)
NSin 2 a~ +. 2N I

( 3

i sn q=- N ([2N )* '(39.8)

The formula for the error in position J, obtained by the

weight coefficients (39.7) and (39.8), will have the form

M0 so P ~ 3 I+ISI2c (39.9)
M N- 3sin22 (cN+ 4 +3 si )(

Let us now consider a case when at least one direction,

(for example, Jk in Figure 80) comprises a "good" angle with each

of the remaining directions (i.e., close to 90°). Assuming that

aJk = 9g°, and sin acjk = 1, we obtain the following expressions

for the weight coefficients:

p,
qx= c{ _ (N-ari) sin2c a -"2* [1+(N-1) sin2a] N -+

3(N - 1) sin2 C 1 }(39.10)

+ [l-+{(N--i) sin2a] N' '
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qyj P + 3 N-1
qY/ =(N-I)+sin2a { -2 * [(N--1)+sin2a]N +

3 sin2a (39.11)
+ [(,N--)+sin2cj N }'

q p2 (4_ _4_·
(39.12)

We note than in Formulas (39.7) - (39.11) the terms are discarded

which contain a sine of a small angle in the fourth power in the

numerator.

Let us further assume that at least two directions (directions

Jk and Jt in Figure 80) comprise "good" angles with the remaining

directions. This will mean that ajk = aJt 90°  sin ajk sin at

1, and then - if terms containing sin4 a are not retained -

the formulas for the weight coefficients will assume the form

qx- 2+(N-2)sin2a {1+ [2+(N--2)sin2alN +

3 ( N-- 2) sin2 a (3913)
[ 2+(N-2)sin2a]N

P2 3 3a]
qv,=q 2

= 
-(N-I)+sin

2 ac + 2- [(N-1)+sin2alN +

__3_ _ MO _ _ _ (39.14)
+ [(N- 1)+SjalN}J.

The values of /jp-, where the value of 1/pj is calculated

from the expression: l/p = + q + q, are presented in
e 3j q yj qzaj

Table 3. The weight coefficients of q q and q are
xi Yj z
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TABLE 3

Directions are
Number of directions, forming small distributed

angles at a given point-- uniformly_

N= 6 N - 1 = 5 N -2 - 74 7 , - .

1 1 2 1 3 1 4 5
15°  2.04 1.24 1.08 1.00

10°  2.90 1.26 1.10 1.00

calculated as a function of the assumed geometric conditions from

Formulas (39.7), (39.8) (the third graph), (39.10) - (39.12)

(the third graph), (39.13) - (39.14) (the fourth graph) and (39.2)

(the fifth graph).

The data of Table 3 indicate that, if even two directions

form "good" angles with the remaining directions, the loss of

accuracy is essentially negligible. In continuous networks,

there are no cases when all angles, made by the directions meas-

ured from a given point, will be small, but this case (the second

graph of Table 3) leads to a great decrease in accuracy. There-

fore, if part of the directions, belonging to a given point, form

small angles among themselves, the accuracy of calculating the

point is not reduced.

Similar calculations may be carried out for networks in which

only the distances to the AES are measured. The values of /T7
for this case are presented in Table 4.

It is obvious from Table 4 that the effect of the shape of

the network is more strongly manifested for networks, constructed

only by measured distances to the AES. In this case two sides,

intersecting at "good" angles, are required as a minimum.
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TABLE 4

Directions are
a Number of directions, forming small distributed

angles at a given point -uniformly
=6 N -1=5 Nuniformly-2=4N:=6 N -1 = 5 N- 2-=4

15 °  3.12 2.53 1.80 1.65

10°  4.70 3.60 1.95 1.65

To increase accuracy, preference should be given to networks

in which all three elements are measured. However, this will

hardly be the best engineering solution of the problem. Let us

illustrate this position by an example. Let N directions be /196

measured at some point, and let the distances also be measured

by t directions. Then (35.30) assumes the form

i t p [(N-t)- q]

t - (39.15)
A - ,+ ' - 2] +[(N--t) . ] n2

or with uniform distribution of the lines with respect to the

coordinate axes

AI=J t+2 3 A9 + [ 2 t1 (39.16)
2=P ,+ 2 3-- t+ - (A'-t + 3 FNT)<

The reciprocal weights of the errors in the position, cal-

culated by Formula (39.16) and for different values of t (in

this case N is assumed equal to 6), are presented in Table 5.

It is obvious from Table 5 that, if a single distance

(t = 1) is measured from each ground point, the accuracy of

calculating the points is increased by a total of 6%, of two

points - by 13%, and finally, if the distances at the points are

measured by all directions, an increase of accuracy by 24% may

be expected. n
r- 7 .



Thus, measurement of the differences by all lines of the

space geodetic network, by considerably increasing the total

number of operations, increases accuracy by only 1.2 times.

Therefore, the main role of linear measurements should be not so

much in increasing accuracy, as in representing and conserving

the scale for the entire network. In connection with this, no

attempt should be made to measure all lines, but only part of

them, distributing them uniformly over all sections of the

network.

The problem of the optimum number of measured sides and

their distribution requires additional investigations. But since

the errors in the measurements are localized in the section con-

sisting of six to eight series of points, we may assume in the

first approximation that the effect of linear measurements on

determining the scale of a given section of the network will be

approximately within these limits. Therefore, it is recommended

that points for which distances are measured be arranged along

six to eight sides of space triangulation.

At the same time, it is necessary to note that measurement /197

of the differences is of great importance at those positions

where, for some reason or other, the network has an unsatisfactory

geometric shape. A radical increase in the accuracy of space tri-

angulation in such sections may be achieved by an optimum combi-

nation of angular and linear measurements.
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40. Calculation of the Optimum Characteristics

of Space Triangulation Design

Space triangulation design should contain a number of

characteristics, necessary for its implementation, which may be

divided into three groups.

The first group comprises the indicators of accuracy:

1 - measurement errors (m, mp, mAP),

2 - errors in calculating the triangulation elements (mB, mD),

3 - errors in the position of triangulation points (Mj) or

relative errors in their common position (v);

The second group will contain the geometric indicators:

4 - the distances between ground points (D),

5 - the orbital parameters of the AES (i, H),

6 - the distances to the AES (p),

7 - the angles between the directions, planes, and chords

(p, X, A),

8 - the elevation of the AES above the level of the obser-

vation points (a);

The third group may include quantitative characteristics:

9 - the number of AES positions or directions from the

observation point, or the number of synchronization planes required

to obtain the result (n),
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10 - the number of observed AES (s),

11 - the frequency of the AES passing through the zone of

common visibility from the observation points (f),

12 the duration of total observation time (T).

Under different conditions for solution of the design problem,

some characteristics will be given before, and others will be

determined during, the design.

The most common case is a design based on the overall purpose

for space triangulation, when only the average distance between

the points and the accuracy of their calculation will be given.

The design should then be determined from all remaining charac-

teristics, up to selection of the observation equipment, providing

the required accuracy of observations.

A design based on representation of the first, third, fourth,

fifth, tenth, eleventh and twelfth characteristics will be the

most practical. In this case, the agreement of the results of

triangulation accuracy, provided by the design, and the time

required for its creation should be checked.

The narrowest problem will be a priori calculation of the /198

accuracy of the position of the points in the network, when all

characteristics, besides the third one, are given. The calcula-

tions here reduce to sequential use of the formulas for estimating

the accuracy of the position of the points. Numerical inversion

of the matrices of normal equations on an electronic computer may

also be used for a more rigorous evaluation of the design.

To illustrate the latter problem, let us analyze one of the

designs of a worldwide space triangulation network, proposed by

the Soviet scientist, I. D. Zhongolovich [18].
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The basic idea of this design consists in constructing a

closed three-dimensional network of space triangulation triangles

around the Earth, whose chords form a rectilinear polygon - an

icosahedron. The design has the following technical characteris-

tics: space triangulation is constructed by the method of chords,

the number of calculated points is 12, and the number of chords,

convergent at each ground point, is identical and equal to 5, the

chord lengths D = 6700 km, the satellite altitude H = 12,300 km;

the average distance between the ground points and the AES is

p = 14,000 km, which will correspond to the angle of intersection

for a satellite of cp = 28°.

The author of the design assumes that, with a sufficient

number of intersecting planes (synchronization planes), we can

achieve an accuracy in calculating the spherical coordinates of

the chords in the space network of about 1", i.e., ml = mA cos 9 =

1". For these conditions, the error in the direction of the

chord comprises mB = 1.4".

Let us first calculate which number of synchronization planes

should be obtained to achieve such accuracy. From Formula (37.11)

we will have
rn

2
90

2

(n--- 1)== -'-CP
mBD:2 (sin2 A)¢p '

(40.1)

Assuming that m = 1", mB = 1.4", (sin 2 Xcp = 0 3 D = 6700, p =

14,000) we obtain n = 16.

Let us now estimate the errors of the points of the first

series of the network shown in Figure 54 (points 2, 3, 4, 5, 6).

The errors in the position of points in the networks with meas-

ured directions to the AES are calculated by Formula (35.31).
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The latter may be simplified, if we assume that the measured

directions are uniformly distributed with respect to the coordin-

ate axes. Then l2 nm 2.  n22q2 = N/3 , and Formula (35.31)

assumes the form

M=j p2/N. (1+ +N)* (40.2)

When the chords are equated in the network, the formula for the

error in the position is the following:

2N N (40.3)

The value of the error, calculated by Formula (40.3) will be /199

identical for all points and will be

1,11 * 6 700 000Mi --= *000 1,13 -= 52 .
206 265

When deriving Formula (40.3), the errors in the coordinates

are assumed equal to M = M = M = 30 m.
xJ yj zJ

Professor I. D. Zhongolovich reduces the errors in the

coordinates of the same points, obtained as a result of adjusting

the network model (Table 6), which corresponds to its design.

TABLE 6

' 1| , A At i i= 1  -, Ali - .i
point I+

2 - 30 25 26 47
3 24 42 30 57
4 44 34 32 64
5 44 34 32 64
6 24 42 30 67
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The data given in Table 6 indicate that the assumption about

the uniform distribution of chords with respect to the coordinate

axes, on the basis of which Formula (40.3) was obtained, is ful-

filled only partially in the given case. This circumstance and

the calculated approximation of the expressions of the weight

coefficients led to the fact that an a priori estimation by this

formula and an a posteriori estimation (from the results of adjust-

ment) were somewhat different. However, the difference in the

estimates comprises only 17% - a value which may not be considered

high.

The second basic problem of the triangulation design, essen-

tially the reverse of that considered - calculation of the optimum

characteristics of the design according to the given accuracy -

is more complicated. Let us consider the more interesting ver-

sion of this problem in the practical sense in the example of a

space triangulation network, constructed from the chord directions.

1. The density and required accuracy of calculating the

points, which are determined by the purpose of the given network,

are assumed to be known. The mean square error in calculating

the direction to the AES ma is also known. Since density may

always be expressed by the average length of the sides between

the ground points D and the accuracy of the network may be char-

acterized by the relative error in the common position of two

adjacent points v, we will assume the values D, v, and m to be

known.

The required accuracy of calculating the chords, the number

of synchronization planes, the maximum distances to the AES and

the value of the semimajor axis of the orbit (in the first

approximation - the radius of a circular orbit) should be found

from these data.
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2. A second version of this problem is possible whose /200

initial data will be v, mB, and H - the satellite altitude, i.e.,

a rather frequent situation with a satellite already selected

for observations, will be considered.

Let us calculate the main characteristics of a design using

the first version. Let us first establish the relationship

between the value v and the error in the position of the point

Mj in a space triangulation network, constructed by the method

of chords.* The error in the common position of two adjacent

points mjj may be represented as

lJj-- t (40. 4)

where t. are the projections of errors in the position of points
J

onto the chord connecting these points. With uniform distribu-

tion of the position error vector with respect to the coordinate

axes, we obtain

tl 2q = 35 M1,,
(40.5)

Thus

__ 2 i 12 ,
D 3 D2 . (40.6)

Further assuming for a priori calculations MJ = Mj = Mj

we will have
v 1 /.2 I.

(40.7)

*Taking into account the equivalency of the various methods
of space triangulation, the method of chords was selected only
for computational convenience.
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On the other hand, the error in the position of the point is

expressed approximately by Formula (40.3).

Let us assume that the average number of chords, convergent

at a given point N = 5. Then from Formulas (40.3) and (40.7),

we obtain

nl- 1,12v.
pI (40.8)

Thus, the design will be accomplished with the given accuracy,

if the errors in the direction of the chords are subject to

Condition (40.8). Having substituted the expression for the

error in the direction of the chord in angular measurements from

Expressions (40.1) into (40.8), we obtain

v 1,25 m~p (40.9)
D J/(sin2 )ei p (n__ 1p) p

The five independent parameters in Formula (40.9) make it

possible to achieve the required value of v by combining them in

different ways. By definition, we are given the average length

of chord D and the error of the topocentric direction to the AES.

At the present time, depending on the type of cameras and the

errors in astrometric processing of photographs, the latter varies /201

within the range of 0.7 - 2.0". The values p and n may vary

over a wide range, but the variation of their ratio is important.

From Expression (40.9), we have

P - (sin2)p (40.10)'Yi'--l - =,5(4.0
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The optimum value of both the geometric characteristics

(p, A) and the quantitative characteristics (n) for the given

average distance between the points (D) and the accuracy of their

mutual position (v) is established on the basis of the variation

of this ratio.

Since the time of conducting the observation session T

depends on the number of measurements n, required to achieve the

given accuracy, it is proper to outline briefly the order of

calculating this characteristic, proposed by Lambeck [58].

The total time T is a function of the frequency of AES

passage through the zone of observations f and may be expressed

as

n

(40.11)

where Pi is the probability of losses of possible observations

due to unfavorable meteorological conditions, failures of obser-

vation equipment, interruption of observations during preliminary

processing, and non-simultaneity of observations.

The frequency of the passages every 24 hours may in turn be

represented by the expression

f= 144'P2P3 (40.12)At

where P2 is the probability of finding the AES in the zone of

common visibility of the observation points; p3 is the average

probability of visibility of the AES; and At is the time of

finding the AES in the zone of common visibility (in minutes).
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In this case P2 and At depend on-the area of the zone of

common visibility (S), related to the geometric characteristics

of the network (pD) and to the altitude of the AES (H) by

Expression (37.10).

One version is possible of calculating the optimum charac-

teristics of the design, with the total observation time T being

given. In this case, the order of calculations will be reversed

and will include determining the maximum value of n as functions

of the given geometric characteristics D or H and the optimum

value of the zone of common visibility S, and then - calculating

the expected accuracy of the results (v) with consideration of

the given measurement accuracy (my).
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